Faculty of Engineering
   
   
  
 

Image of Rabah Boukhanouf

Rabah Boukhanouf

Lecturer, Faculty of Engineering

Contact

Biography

My research and teaching experience span the field of energy efficient and sustainable technologies with a particular focus on applications in built environment. I completed my Doctorate degree from the University of Manchester, UK ,in 1996 and then I worked as a researcher in academia and industry for over four years. In 2000, I joined the University of Nottingham where I worked on a number of research projects funded by industry and government research councils. These include design, simulation and testing thermal performance of passive and active heating and cooling systems including co- and tri-generation systems, adsorption and absorption systems, evaporative cooling systems, heat pumps, and other advanced heat transfer enabling technologies. Currently, I am a lecturer of sustainable energy technology and a member of Buildings, Energy and Environment (BEE) Research Group. I completed the supervision of over 10 PhD thesis and currently supervise 6 PhD students at various stages of their research projects. I published a number of Journal papers, book chapters and conference papers. I am also named the inventor on 6 UK and International Patents.

Buildings, Energy and Environment Research Group.

Expertise Summary

My professional expertise encompasses design, modeling and experimentation of energy efficient systems and allied enabling technologies. These include heating, ventilation, air conditioning, heat recovery (HVAC) technologies, heat transfer enabling technologies (heat pipes, heat and mass exchangers), small scale heat and power generation systems. I have also extensive experience in the use of various computer tools/ software packages such as Matlab, Flow3D, FluidFlow and EnergyPro for technical and economic feasibility assessment of low carbon technologies.

Teaching Summary

My teaching experience spans over 13 years both at Undergraduate and Postgraduate level. my main teaching interests are in Energy Efficient and Sustainable Technologies with particular focus on Built… read more

Research Summary

I have broad research interests in energy efficient and sustainable technologies with a focus on application in the built environment.

  1. Design, Modeling, and testing of Heating, Ventilation and Air conditioning (HVAC) Systems
  • Design, modeling and testing of adsorption heating/cooling
  • Evaporative cooling systems
  • Heat pump system
  • Heat Recovery systems
  • Solar hot water systems
  1. Design, Modeling, and testing of small scale power generation systems
  • Thermoelectric generators
  • Micro-CHP systems
  1. Other heat and mass Transfer enabling technologies
  • Heat pipes
  • Porous media for evaporative cooling system

Selected Publications

I am also involved in many administrative roles within the department and university:

  • MSc programmes coordinator
  • Department Academic Integrity Officer
  • Member of Teaching and Learning Committee
  • Member of Health and Safety Committee
  • Faculty PGT Admissions committee (department representative)

My teaching experience spans over 13 years both at Undergraduate and Postgraduate level. my main teaching interests are in Energy Efficient and Sustainable Technologies with particular focus on Built Environment. I convene and deliver te following Modules:

  • K14EES (Energy Efficient Systems) module: The Module is taught to MSc students enrolled on the department MSc programs. The module covers Principles of power generation, condensing boilers, combined heat and power, refrigeration systems, heat pumps, heat recovery systems and the environmental impact of the technologies. The module is assessed by a written piece of coursework. the coursework is made of group work and individual report.
  • K14CHP (Combined Heat and Power) module: The module is highly technical. It is open to all students registered on MSc programmes in the Faculty of Engineering. the module covers principle of combined heat and power, prime movers technology, feasibility analysis of combined heat and power systems and energy policy and government financial support. students are assessed by exam and coursework.
  • K12CSB (Control Systems for Built environment) module: The module is for year 2 students studying of BEng Architectural Environment engineering. The module cover control theory and controller design strategies using MATLAB/SIMULINK software. the module is assessed by coursework.

I have also supervised over 100 UG and PG dissertation research projects in the field of Low Carbon Building Technologies.

Past Research

Examples of Research projects:

1) Low temperature community heat networks (LTHN)

Context:

Decarbonising the heat sector is central to the UK and EU countries energy policy agenda in mitigating climate change effects and working towards a carbon neutral society. The aim of the work is to identify the optimum supply and return temperatures to operate DH networks and heating systems in buildings. An alternative methodology was developed to investigate and plan the implementation of low temperature district heating (LTDH) in existing buildings with traditional high temperature radiators.

http://www.theade.co.uk/news/ade-news/brightest-and-best-recognised-at-the-decentralised-energy-awards

https://www.sciencedirect.com/science/article/pii/S0378778817328360

2) Regenerative Evaporative Cooling

Context:

Energy consumption for thermal comfort in buildings in hot and dry climates make up to 50% (rising to 70% in typical mid-afternoon) of total demand for power. This market is traditionally served by vapour compression systems, which are energy intensive and the energy performance affected by elevated ambient temperatures. Inevitably, at peak load demand, electricity grids reliability is affected, putting strenuous financial strains to increase power generation spare capacity. In addition, conventional air conditioning systems contribute directly and indirectly to emission of global warming causing greenhouse gases and carry health risks such as allergies and asthma for building occupants

The aim of this study is to develop a new configuration of heat pipe based indirect evaporative cooling system. The basic mechanical design is centred on the regenerative configuration of IEC system which integrates porous ceramic tubes as wetting media materials and tubular heat pipes in a compact modular heat and mass transfer exchanger (HPHMX).

Both experimental and theoretical results show that the system can be an energy efficient alternative for traditional vapour compression systems. an overall coefficient of performance of (COP) of 6-17 was achieved while water consumption rate reduced.

https://doi.org/10.1016/j.buildenv.2018.06.004

3) Solid desiccant air dehumidification

Context:

Thermal comfort in buildings is greatly affected with air relative humidity. In conventional vapour compression air conditioning systems, air moisture content is reduced through the process of air dehumidification by cooling it below its saturation temperature before reheating it, an energy intensive strategy.

the aim of this work is to develop a novel and compact design of an air dehumidification system. the system uses enhanced heat and mass transfer processes by limiting the heat of adsorption during the adsorption cycle. A mathematical model for complex heat and mass transfer processes have been developed and validated experimentally.

4) Low Temperature FPSE for power generation / water pumping in remote locations of developing countries.

Context:

Abstract

Approximately 1.6 billion people worldwide do not have access to electricity [World Bank]. Most of them live in rural regions in developing countries which lacked access to grid electricity.

Grid extension programmes, though expensive, and the use of solar home systems have helped to bring the number of people without access to electricity down significantly. this project uses a FPSE that converts solar energy into mechanical power to drive an electric generator for power generation or a water pump for irrigation. The research project involved design, modeling and testing a prototype units under controlled solar radiation conditions.

Future Research

Some of the most challenging issues facing the the built environment is reducing energy consumption in buildings particularly heat energy. As building standards of thermal envelope become more stringent (new build and refurbished buildings), current practices of high temperature heating systems design may be rendered absolute, particularly in densely populated cities.

  • Research area: A multi-vector energy systems could integrate low temperature heat sources (e.g., renewable sources and waste heat from industrial processes), thermal storage (e.g., damping excess renewable power) and battery storage in the form of heat and power networks linking and creating energy sustainable communities.

In countries of the world with high temperature climates, it is increasingly recognized that current air conditioning systems are not sustainable and more environmentally benign and novel cooling techniques are required to reduce the huge demand for power.

  • Research Area: Therefore, passive cooling systems with novel materials is a research area where further development will be one of my future research focus.

I have also keen interests in research and the development of allied thermal management solutions and process in buildings.

I welcome enquiries from potential PhD candidates from Home, EU and international countries who are interested in the following research areas: Energy efficient and sustainable technologies with a focus on application in the built environment; passive and active heating and cooling systems; adsorption and absorption systems; heat pumps; low carbon technologies; heat recovery (HVAC) technologies.

Faculty of Engineering

The University of Nottingham
University Park
Nottingham, NG7 2RD



Contacts: Please see our 'Contact us' page