School of Mathematical Sciences

Machine learning for first-principles calculation of physical properties

Project description

The physical properties of all substances are determined by the interactions between the molecules that make up the substance. The energy surface corresponding to these interactions can be calculated from first-principles, in theory allowing physical properties to be derived ab-initio from a molecular simulation; that is by theory alone and without the need for any experiments. Recently we have focussed on applying these techniques to model carbon dioxide properties, such as density and phase separation, for applications in Carbon Capture and Storage. However, there is enormous potential to exploit this approach in a huge range of applications. A significant barrier is the computational cost of calculating the energy surface quickly and repeatedly, as a simulation requires. In collaboration with the School of Chemistry we have recently developed a machine-learning technique that, by using a small number of precomputed ab-initio calculations as training data, can efficiently calculate the entire energy surface. This project will involve extending the approach to more complicated molecules and testing its ability to predict macroscopic physical properties.

This project will be jointly supervised by Dr Richard Wheatley in the School of Chemistry.

 

More information

Full details of our Maths PhD

How to apply to the University of Nottingham

School of Mathematical Sciences

The University of Nottingham
University Park
Nottingham, NG7 2RD

For all enquiries please visit:
www.nottingham.ac.uk/enquire