School of Mathematical Sciences

Quadratic Forms: Interaction of Algebra, Geometry and Topology

Project description

From the beginning of the 20th century it was observed that quadratic forms over a given field carry a lot of information about that field. This led to the creation of rich and beautiful Algebraic Theory of Quadratic Forms that gave rise to many interesting problems. But it became apparent that quite a few of these problems can hardly be approached by means of the theory itself. In many cases, solutions were obtained by invoking arguments of a geometric nature. It was observed that one of the central questions on which quadratic form theory depends is the so-called "Milnor Conjecture". This conjecture, as we now understand it, relates quadratic forms over a field to the so-called motivic cohomology of this field. Once proven, this would provide a lot of information about quadratic forms and about motives (algebro-geometric analogues of topological objects) as well. The Milnor Conjecture was finally settled affirmatively by V. Voevodsky in 1996 by means of creating a completely new world, where one can work with algebraic varieties with the same flexibility as with topological spaces. Later, this was enhanced by F. Morel, and now we know that quadratic forms compute not just the cohomology of a point in the "algebro geometric homotopic world", but also the so-called stable homotopy groups of spheres as well. It is thus no wonder that these objects indeed have nice properties.

Therefore, by studying quadratic forms, one actually studies the stable homotopy groups of spheres, which should shed light on the classical problem of computing such groups (one of the central questions in mathematics as a whole). So it is fair to say that the modern theory of quadratic forms relies heavily on the application of motivic topological methods. On the other hand, the Algebraic Theory of Quadratic Forms provides a possibility to view and approach the motivic world from a rather elementary point of view, and to test the new techniques developed there. This makes quadratic form theory an invaluable and easy access point to the forefront of modern mathematics.

Supervisor contacts

 

Related research centre or theme

Algebra, Arithmetic and their Geometries

 
 

 

 

 

More information

Full details of our Maths PhD

How to apply to the University of Nottingham

School of Mathematical Sciences

The University of Nottingham
University Park
Nottingham, NG7 2RD

For all enquiries please visit:
www.nottingham.ac.uk/enquire