School of Mathematical Sciences

Quantum Chaos in Combinatorial Graphs

Project description

Graphs consist of \(V\) vertices connected by \(B\) bonds (or edges). They are used in many branches of science as simple models for complex structures. In mathematics and physics one is strongly interested in the eigenvalues of the \(V x V\) connectivity matrix \(C\) of a graph. The matrix element \(C_ij\) of the latter is defined to be the number of bonds that connect the i'th vertex to the j'th vertex. In this PhD project the statistical properties of the connectivity spectra in (generally large) graph structures will be analysed using methods known from quantum chaos. These methods have only recently been extended to combinatorial graphs (Smilansky, 2007) and allow to represent the density of states and similar spectral functions of a graph as a sum over periodic orbits. The same methods have been applied successfully to metric graphs and quantum systems in the semiclassical regime for more than two decades.

 

Project published references

Idan Oren, Amit Godel and Uzy Smilansky Trace formulae and spectral statistic for discrete Laplacians on regular graphs (I) J. Phys. A: Math. Theor. 42 (2009) 415101

Idan Oren, Amit Godel and Uzy Smilansky Trace formulae and spectral statistic for discrete Laplacians on regular graphs (II) J. Phys. A: Math. Theor. 43 (2010) 225205

More information

Full details of our Maths PhD

How to apply to the University of Nottingham

School of Mathematical Sciences

The University of Nottingham
University Park
Nottingham, NG7 2RD

For all enquiries please visit:
www.nottingham.ac.uk/enquire