School of Mathematical Sciences

The statistics of nodal sets in wavefunctions

Project description

If a membrane vibrates at one of its resonance frequencies there are certain parts of the membrane that remain still. These are called nodal points and the collection of nodal points forms the nodal set. Building on earlier work this project will look at the statistical properties of the nodal set -- e.g. for 3-dimensional waves the nodal set consists of a collection of surfaces and one may ask questions about how the area of the nodal set is distributed for an ensemble of membranes or for an ensemble of different resonances of the same membrane. This project will involve a strong numerical component as wavefunctions of irregular membranes need to be found and analysed on the computer. Effective algorithms to find the area of the nodal set, or the number of domain in which the sign does not change (nodal domains) will need to be developed and implemented.

Supervisor contacts

 

Related research centre or theme

Quantum Information and Metrology

Quantum Mathematics

 
 

 

 

Project published references

Galya Blum, Sven Gnutzmann, Uzy Smilansky, Nodal domains statistics- a criterion for quantum chaos, Phys. Rev. Lett. 88, 114101 (2002)

Alejandro G. Monastra, Uzy Smilansky and Sven Gnutzmann, Avoided intersections of nodal lines, J. Phys. A. 36, 1845-1853 (2003)

G. Foltin, S. Gnutzmann and U. Smilansky, The morphology of nodal lines- random waves vs percolation, J. Phys. A 37, 11363 (2004)

Yehonatan Elon, Sven Gnutzmann, Christian Joas and Uzy Smilansky, Geometric characterization of nodal domains: the area-to-perimeter ratio, J. Phys. A 40, 2689 (2007)

S. Gnutzmann, P. D. Karageorge and U Smilansky, Can one count the shape of a drum?, Phys. Rev. Lett. 97, 090201 (2006)

More information

Full details of our Maths PhD

How to apply to the University of Nottingham

School of Mathematical Sciences

The University of Nottingham
University Park
Nottingham, NG7 2RD

For all enquiries please visit:
www.nottingham.ac.uk/enquire