article

Biomaterial immune control discoveries could reduce implant rejection

Monday, 04 May 2020

Scientists have discovered how the materials used in medical implants like artificial joints can be adapted to control the immune response to them and reduce the risk of rejection.

The team from the University of Nottingham’s Schools of Pharmacy and Life Sciences have found that the surface shape (topography) and chemical composition of polymer materials can be changed to create materials that control the body’s immune response. This could have future applications in the fight against rejection of medical devices including artificial joints, dental implants and vascular implants. The results from two recent studies have been published in Advanced Science and Matter.

Artificial joints, stents and dental implants are among the most common devices that use biomaterials to restore function or completely replace diseased or damaged tissues. However, following the implantation of biomaterials in the body, a host reaction is common, including responses such as inflammation, a foreign body reaction (FBR), and fibrous capsule development which can result in the implant failing.

These reactions are driven by the activation of immune cells called monocytes and macrophages attaching to the implant surface. The physical features on the surface of a material or implant known as ‘topography’ is known to influence macrophage attachment.

Professor Amir Ghaemmaghami has co-led the research, he explains: “We are looking at ways to create materials that can be safely put inside the body without the immune system attacking it and causing rejection. To do this we are exploring materials that can control the immune response. We have used high throughput screening technology to examine how the topography and chemical properties of a material can be used to design “immune‐instructive” surfaces for potential use in implants, which influence macrophage function and consequently the foreign body responses to biomaterials.”

Taking control of the immune response

A state-of-the-art high throughput screening approach was used to investigate the relationship between material topographies and immune cell attachment and behaviours for 2176 different micropatterns. 

The results indicated that micron-scale pillars 5-10um in diameter were key in driving macrophage attachment, and that the density of the micropillars proved key in controlling inflammatory reactions.

The team also discovered immune instructive polymer chemistries that successfully controlled the immune response in a pre-clinical rodent model. This was achieved through screening libraries of diverse polymers and identifying materials that control the behaviour of macrophages.

An AI algorithm was used to model the relationships between the material chemistries and the cell responses they produced. These results suggest that different immune-instructive polymers attract different amounts of protein adsorption which was key to the macrophage responses. 

These latest discoveries add to a wealth of materials research taking place at the University of Nottingham and it is exciting to have discovered these biomaterials that could be a real game-changer in the area of medical implants. Getting these materials used in a commercial product would be our ultimate aim for this research, there is still a way to go to get there but these discoveries are a significant step towards that.
Professor Morgan Alexander, School of Pharmacy

This research was conducted in collaboration with Technical University Eindhoven, La Trobe University Australia and Maastricht University. It has been funded by an EPSRC Programme Grant in Next Generation Biomaterials Discovery that aims to find new biomaterials. The aim is to allow us to move beyond the existing limited range of polymeric drug and cell delivery agents and medical device polymers that are currently licensed for use in man, to bespoke materials identified to function optimally for specific applications.

Story credits

More information is available from Professor Amir Ghaemmaghami on Amir.Ghaemmaghami@nottingham.ac.uk or Jane Icke, Media Relations Manager for the Faculty of Science at the University of Nottingham, on +44 (0)115 951 5751 or jane.icke@nottingham.ac.uk

janeicke
Jane Icke - Media Relations Manager Science
Email: jane.icke@nottingham.ac.uk
Phone: 0115 7486462
Location:

Notes to editors:

About the University of Nottingham

Ranked 32 in Europe and 16th in the UK by the QS World University Rankings: Europe 2024, the University of Nottingham is a founding member of the Russell Group of research-intensive universities. Studying at the University of Nottingham is a life-changing experience, and we pride ourselves on unlocking the potential of our students. We have a pioneering spirit, expressed in the vision of our founder Sir Jesse Boot, which has seen us lead the way in establishing campuses in China and Malaysia - part of a globally connected network of education, research and industrial engagement.

Nottingham was crowned Sports University of the Year by The Times and Sunday Times Good University Guide 2024 – the third time it has been given the honour since 2018 – and by the Daily Mail University Guide 2024.

The university is among the best universities in the UK for the strength of our research, positioned seventh for research power in the UK according to REF 2021. The birthplace of discoveries such as MRI and ibuprofen, our innovations transform lives and tackle global problems such as sustainable food supplies, ending modern slavery, developing greener transport, and reducing reliance on fossil fuels.

The university is a major employer and industry partner - locally and globally - and our graduates are the second most targeted by the UK's top employers, according to The Graduate Market in 2022 report by High Fliers Research.

We lead the Universities for Nottingham initiative, in partnership with Nottingham Trent University, a pioneering collaboration between the city’s two world-class institutions to improve levels of prosperity, opportunity, sustainability, health and wellbeing for residents in the city and region we are proud to call home.

More news…

Media Relations - External Relations

The University of Nottingham
YANG Fujia Building
Jubilee Campus
Wollaton Road
Nottingham, NG8 1BB

telephone: +44 (0) 115 951 5798
email: pressoffice@nottingham.ac.uk