Cows 2

Farm wastewater modelling shows footbaths are source of antimicrobial resistance

Wednesday, 22 May 2024

New research has mapped wastewater flows on farms and revealed where spikes in antibiotic resistant bacteria in slurry occurs, showing that water from copper and zinc footbaths used by dairy animals can cause fluctuations.

Researchers from the University of Nottingham developed mathematical models and conducted on-farm research to explore the impact of wastewater flows and management practices on antimicrobial resistance (AMR) in slurry. The research is the first to investigate the effects of farm layout, the farm practices associated across different areas of the farm, and the impact these may have on the emergence and spread of AMR across the farm.

Temporal fluctuations in cephalosporin-resistant Escherichia coli were observed and attributed to farm activities, specifically the disposal of spent copper and zinc footbath into the slurry system. The results have been published in Nature Antimicrobials and Resistance.

The results highlight farm-specific opportunities to reduce AMR pollution, beyond antibiotic use reduction, including careful disposal or recycling of waste antimicrobial metals.

Dairy slurry if not properly stored can be a source of environmental contamination with antimicrobial resistant genes and bacteria, which could eventually get into the human population through water or crops.

Previous modelling research from the University of Nottingham showed that slurry tanks that were left alone without further waste added for at least 60 days reduced spread of antibiotic resistant bacteria (ARB) as the bacteria died in the hostile environment. Researchers also noticed that there were times when there were spikes in cephalosporin-resistant Escherichia coli.

Dov Stekel 410 x273
What we initially found was that the slurry tank wasn’t as scary a place as we thought for the spread of antimicrobial resistant genes and in fact if left alone for a period of time the bacteria would die in such a hostile environment. However, what was also interesting was that we were seeing fluctuations in a particularly problematic drug-resistant bacteria called Escherichia coli. When we investigated this further in this research using computer modelling and on farm research we saw that there was a direct correlation between the emptying of the water from the Zinc and copper footbaths into the slurry tank and a spike in the presence of Escherichia coli.
Dov Stekel, Professor of Computational Biology in the School of Biosciences at the University of Nottingham

In addition to antibiotics, other antimicrobials such as metals (copper and zinc) and other chemicals (e.g., formalin, disinfectants) are widely used across farms globally, particularly in footbaths to prevent lameness in livestock.

Metals and other antimicrobial agents (such as formalin and glutaraldehyde) are known to have a co-selective effect on antibiotic resistance, meaning that ARBs could persist in the slurry even after the antibiotics have degraded.
Dr Jon Hobman, Associate Professor of Microbiology, School of Biosciences

Professor Stekel added “Mapping the antibiotic resistant bacteria in this way allows us to understand its precise source and importantly its route through the farm, we hope this information will lead to wastewater management practices that can be developed to mitigate this.”

Engineers at the University of Nottingham have started investigating how to remove copper and zinc from cattle footbath wastewater and found that layered Double Hydroxides successfully removed copper and zinc from cattle footbath. This the first successful investigation into the removal of copper and zinc from a commercially available cattle footbath powder mix solution.

Story credits

More information is available from Professor Dov Stekel on

Jane Icke - Media Relations Manager Science
Phone: 0115 7486462

Notes to editors:

About the University of Nottingham

Ranked 32 in Europe and 16th in the UK by the QS World University Rankings: Europe 2024, the University of Nottingham is a founding member of the Russell Group of research-intensive universities. Studying at the University of Nottingham is a life-changing experience, and we pride ourselves on unlocking the potential of our students. We have a pioneering spirit, expressed in the vision of our founder Sir Jesse Boot, which has seen us lead the way in establishing campuses in China and Malaysia - part of a globally connected network of education, research and industrial engagement.

Nottingham was crowned Sports University of the Year by The Times and Sunday Times Good University Guide 2024 – the third time it has been given the honour since 2018 – and by the Daily Mail University Guide 2024.

The university is among the best universities in the UK for the strength of our research, positioned seventh for research power in the UK according to REF 2021. The birthplace of discoveries such as MRI and ibuprofen, our innovations transform lives and tackle global problems such as sustainable food supplies, ending modern slavery, developing greener transport, and reducing reliance on fossil fuels.

The university is a major employer and industry partner - locally and globally - and our graduates are the second most targeted by the UK's top employers, according to The Graduate Market in 2022 report by High Fliers Research.

We lead the Universities for Nottingham initiative, in partnership with Nottingham Trent University, a pioneering collaboration between the city’s two world-class institutions to improve levels of prosperity, opportunity, sustainability, health and wellbeing for residents in the city and region we are proud to call home.

More news…

Media Relations - External Relations

The University of Nottingham
YANG Fujia Building
Jubilee Campus
Wollaton Road
Nottingham, NG8 1BB

telephone: +44 (0) 115 951 5798