Harnessing ultrasonic imaging to revolutionise manufacturing processes

Wednesday, 01 December 2021

A £1.4m pioneering project examining how ultrasonic imaging can be delivered remotely aims to revolutionise the quality of manufacturing processes.

The three-year project, funded by the Engineering and Physical Sciences Research Council (EPSRC) is aiming to develop a new capability for real-time, remote ultrasonic imaging that can be used for non-destructive evaluation in industry.

The research team, led by the University of Strathclyde and involving the Universities of Nottingham and Bristol, will examine how Laser Induced Phased Arrays (LIPAs), based on principles of laser ultrasonics, can be used to cut the imaging process in manufacturing from half an hour to under a second.

The remote arrays, made of light, can be applied in extreme environments, such as in process monitoring or inspection, and will be designed to pick up potential issues to enable the process be stopped or modified if faults are detected. As well as controlling the manufacturing process itself, it could mean the material could be reworked or improved.

Project lead, Dr Theodosia Stratoudaki from Strathclyde’s Centre for Ultrasonic Engineering, said: “The long-term vision behind this project goes beyond inspection, to develop a method for monitoring and control of in-process parameters, in places of extreme environments such as fusion reactors or turbine engines.

“An array has more than one element inside, but up until now it’s had a fixed geometry – like when you are taking a medical scan, you have an instrument which you place and then take a scan.

“What we are proposing is to break that concept completely and instead of the fixed geometry of instrumentation, the array will actually build as it is scanning by taking feedback from whatever is it imaging, so it is being reconfigured according to what the image is inside.

“It saves time and data and by the end of the project we are aiming to have a system that will be able to take ultrasonic images in under a second without having any contact.”

The array could be used in places with extreme temperatures or restricted access such as the inside of a turbine engine, as light can reach through confined spaces. It could also be used in space, and other places where contamination is an issue or radioactive atmospheres.

Professor Matt Clark, head of the University of Nottingham’s Optics and Photonics Research Group, explained their contribution to the project as improving the speed at which information is collected from the parts being inspected. 

“This is done by increasing the number of points at which the signals are generated by the use of laser patterns projected onto the part or by the use of an array of laser diodes. This combined with parallel signal detection will allow us to drastically reduce the signal acquisition time. “These speed improvements bring the inspection time in line with the manufacturing time for metal 3D printing. The real-time inspection of the complex components made using metal 3D printing would help spot and repair any defects that occur, alongside minimising the need for costly post-manufacture inspections."
Professor Matt Clark

Dr Stratoudaki added: “If you have a means of looking inside the material as its being made, then you can feed that information into the process and change it so that it makes what you want it to.

“An example is with additive manufacturing – metal 3D printing - which is making shapes. Making material that is stiffer in one place and more flexible in others isn’t possible at the moment, but if you have a means to control the whole thing as it’s being built, then the material could be tailor made and more complex structures could be made.

“Making one larger component instead of several also prevents failures in the joins and reduces the possibility of defects, obviously of huge importance in sectors like aerospace, the nuclear industry and other safety critical applications.”

EPSRC is the main funding body for engineering and physical sciences research in the UK and is part of UK Research and Innovation. The project partners also include BAE Systems, Sellafield Ltd, Hitachi and The UK Atomic Energy Authority. This project is a Targeted Research Project of the UK Research Centre in Non Destructive Evaluation.

Story credits

More information is available from Professor Matt Clark on or Emma Lowry, Media Relations Manager (Engineering) on 0115 84 67156 or

Emma Lowry - Media Relations Manager Engineering
Phone: 0115 846 7156
Location: University Park

Our academics can now be interviewed for broadcast via our Media Hub, which offers a Quicklink fixed camera and ISDN line facilities at Jubilee campus. For further information please contact a member of the Press Office on +44 (0)115 951 5798, email

For up to the minute media alerts, follow us on Twitter

Notes to editors:

The University of Nottingham is a research-intensive university with a proud heritage. Studying at the University of Nottingham is a life-changing experience and we pride ourselves on unlocking the potential of our students. We have a pioneering spirit, expressed in the vision of our founder Sir Jesse Boot, which has seen us lead the way in establishing campuses in China and Malaysia - part of a globally connected network of education, research and industrial engagement. Ranked 103rd out of more than 1,000 institutions globally and 18th in the UK by the QS World University Rankings 2022, the University’s state-of-the-art facilities and inclusive and disability sport provision is reflected in its crowning as The Times and Sunday Times Good University Guide 2021 Sports University of the Year. We are ranked eighth for research power in the UK according to REF 2014. We have six beacons of research excellence helping to transform lives and change the world; we are also a major employer and industry partner - locally and globally. Alongside Nottingham Trent University, we lead the Universities for Nottingham initiative, a pioneering collaboration which brings together the combined strength and civic missions of Nottingham’s two world-class universities and is working with local communities and partners to aid recovery and renewal following the COVID-19 pandemic.

More news…

Media Relations - External Relations

The University of Nottingham
C Floor, Pope Building (Room C4)
University Park
Nottingham, NG7 2RD

telephone: +44 (0) 115 951 5798