article

A composite image of a metal 3D printed component with internal passages

Harnessing ultrasonic imaging to revolutionise manufacturing processes

Wednesday, 01 December 2021

A £1.4m pioneering project examining how ultrasonic imaging can be delivered remotely aims to revolutionise the quality of manufacturing processes.

The three-year project, funded by the Engineering and Physical Sciences Research Council (EPSRC) is aiming to develop a new capability for real-time, remote ultrasonic imaging that can be used for non-destructive evaluation in industry.

The research team, led by the University of Strathclyde and involving the Universities of Nottingham and Bristol, will examine how Laser Induced Phased Arrays (LIPAs), based on principles of laser ultrasonics, can be used to cut the imaging process in manufacturing from half an hour to under a second.

The remote arrays, made of light, can be applied in extreme environments, such as in process monitoring or inspection, and will be designed to pick up potential issues to enable the process be stopped or modified if faults are detected. As well as controlling the manufacturing process itself, it could mean the material could be reworked or improved.

Project lead, Dr Theodosia Stratoudaki from Strathclyde’s Centre for Ultrasonic Engineering, said: “The long-term vision behind this project goes beyond inspection, to develop a method for monitoring and control of in-process parameters, in places of extreme environments such as fusion reactors or turbine engines.

“An array has more than one element inside, but up until now it’s had a fixed geometry – like when you are taking a medical scan, you have an instrument which you place and then take a scan.

“What we are proposing is to break that concept completely and instead of the fixed geometry of instrumentation, the array will actually build as it is scanning by taking feedback from whatever is it imaging, so it is being reconfigured according to what the image is inside.

“It saves time and data and by the end of the project we are aiming to have a system that will be able to take ultrasonic images in under a second without having any contact.”

The array could be used in places with extreme temperatures or restricted access such as the inside of a turbine engine, as light can reach through confined spaces. It could also be used in space, and other places where contamination is an issue or radioactive atmospheres.

Professor Matt Clark, head of the University of Nottingham’s Optics and Photonics Research Group, explained their contribution to the project as improving the speed at which information is collected from the parts being inspected. 

“This is done by increasing the number of points at which the signals are generated by the use of laser patterns projected onto the part or by the use of an array of laser diodes. This combined with parallel signal detection will allow us to drastically reduce the signal acquisition time. “These speed improvements bring the inspection time in line with the manufacturing time for metal 3D printing. The real-time inspection of the complex components made using metal 3D printing would help spot and repair any defects that occur, alongside minimising the need for costly post-manufacture inspections."
Professor Matt Clark

Dr Stratoudaki added: “If you have a means of looking inside the material as its being made, then you can feed that information into the process and change it so that it makes what you want it to.

“An example is with additive manufacturing – metal 3D printing - which is making shapes. Making material that is stiffer in one place and more flexible in others isn’t possible at the moment, but if you have a means to control the whole thing as it’s being built, then the material could be tailor made and more complex structures could be made.

“Making one larger component instead of several also prevents failures in the joins and reduces the possibility of defects, obviously of huge importance in sectors like aerospace, the nuclear industry and other safety critical applications.”

EPSRC is the main funding body for engineering and physical sciences research in the UK and is part of UK Research and Innovation. The project partners also include BAE Systems, Sellafield Ltd, Hitachi and The UK Atomic Energy Authority. This project is a Targeted Research Project of the UK Research Centre in Non Destructive Evaluation.

Story credits

More information is available from Professor Matt Clark on matt.clark@nottingham.ac.uk or Emma Lowry, Media Relations Manager (Engineering) on 0115 84 67156 or Emma.Lowry@nottingham.ac.uk.

Emma Lowry final
Emma Lowry - Media Relations Manager Engineering
Email: emma.lowry@nottingham.ac.uk
Phone: 0115 846 7156
Location: University Park

Notes to editors:

The University of Nottingham

Ranked 18th in the UK by the QS World University Rankings 2023, University of Nottingham is a founding member of Russell Group of research-intensive universities. Studying at the University of Nottingham is a life-changing experience, and we pride ourselves on unlocking the potential of our students. We have a pioneering spirit, expressed in the vision of our founder Sir Jesse Boot, which has seen us lead the way in establishing campuses in China and Malaysia - part of a globally connected network of education, research and industrial engagement.  

The University is among the best universities in the UK for the strength of our research, positioned seventh for research power in the UK according to REF 2021. The birthplace of discoveries such as MRI and ibuprofen, our innovations transform lives and tackle global problems such as sustainable food supplies, ending modern slavery, developing greener transport, and reducing reliance on fossil fuels.The University is a major employer and industry partner - locally and globally - and our graduates are the second most targeted by the UK's top employers, according to The Graduate Market in 2022 report by High Fliers Research.

We lead the Universities for Nottingham initiative, in partnership with Nottingham Trent University, a pioneering collaboration between the city’s two world-class institutions to improve levels of prosperity, opportunity, sustainability, health and wellbeing for residents in the city and region we are proud to call home.

More news…

Media Relations - External Relations

The University of Nottingham
YANG Fujia Building
Jubilee Campus
Wollaton Road
Nottingham, NG8 1BB

telephone: +44 (0) 115 951 5798
email: pressoffice@nottingham.ac.uk