article

Plant-derived antiviral drug is effective in blocking highly infectious SARS-CoV-2 Delta variant, say scientists

Friday, 19 November 2021

A plant-based antiviral treatment for Covid-19, recently discovered by scientists at the University of Nottingham, has been found to be just as effective at treating all variants of the virus SARS-CoV-2, even the highly infectious Delta variant.

The struggle to control the Covid-19 pandemic is made more difficult by the continual emergence of virulent SARS-CoV-2 variants, which are either more infectious, cause more severe infection, or both.

In a new study published in Virulence, a group of scientists, led by Professor Kin-Chow Chang from the School of Veterinary Medicine and Science at the University, found that the Delta variant, compared with other recent variants, showed the highest ability to multiply in cells, and was most able to directly spread to neighbouring cells. In co-infections with two different SARS-CoV-2 variants, the Delta variant also boosted the multiplication of its co-infected partners.

The study also showed that a novel natural antiviral drug called thapsigargin (TG), recently discovered by the same group of scientists to block other viruses, including the original SARS-CoV-2, was just as effective at treating all of the newer SARS-CoV-2 variants, including the Delta variant.

In their previous studies* the team showed that the plant-derived antiviral, at small doses, triggers a highly effective broad-spectrum host-centred antiviral innate immune response against three major types of human respiratory viruses, including SARS-CoV-2.

In this latest study, the team set out to find out how well the emergent Alpha, Beta and Delta variants of SARS-CoV-2 are able to multiply in cells relative to each other as single variant infections and in co-infections- where cells are infected with two variants at the same time. The team also wanted to know just how effective TG was at blocking these emergent variants.

Thapsigargin (TG)

Of the three, the Delta variant showed the highest ability to multiply in cells, and was most able to spread directly to neighbouring cells; its amplification rate at 24 hours of infection was over four times that of the Alpha variant and nine times more than the Beta variant.

In co-infections, the Delta variant boosted the multiplication of its co-infected partners. Furthermore, co-infection with Alpha and Delta or Alpha and Beta conferred multiplication synergy, where total new virus output was greater than the sum of corresponding single-variant infections.

Notably, all SARS-CoV-2 variants were highly susceptible to TG treatment. A single pre-infection priming dose of TG effectively blocked all single-variant infections and every co-infection at greater than 95% relative to controls. Likewise, TG was effective in inhibiting each variant during active infection.

Our new study has given us better insights into the dominance of the Delta variant. Even though we have shown that this variant is clearly the most infectious and promotes production of other variants in co-infections, we are pleased to have shown that TG is just as effective against all of them. Together, these results point to the antiviral potential of TG as a post-exposure prophylactic and an active therapeutic agent.”
Professor Kin Chow Chang, lead author of the study

The full study can be found here.

Story credits

* Al-Beltagi et al., 2021; Goulding et al., 2020

Al-Beltagi, S. et al., 2021. Thapsigargin is a broad-spectrum inhibitor of major human respiratory viruses: respiratory syncytial virus, coronavirus and influenza A virus. Viruses 13, 234.

Goulding, L.V. et al., 2020. Thapsigargin at non-cytotoxic levels induces a potent host antiviral response that blocks influenza A virus replication. Viruses 12, 1093.

More information is available from Professor Kin Chow Chang  in the School of Veterinary Medicine and Science at the University of Nottingham at kin-chow.chang@nottingham.ac.uk 

Charlotte Anscombe - Media Relations Manager - Faculty of Medicine and Health Sciences
Email: charlotte.anscombe@nottingham.ac.uk
Phone: 0115 748 4417
Location:

Our academics can now be interviewed for broadcast via our Media Hub, which offers a Quicklink fixed camera and ISDN line facilities at Jubilee campus. For further information please contact a member of the Press Office on +44 (0)115 951 5798, email  pressoffice@nottingham.ac.uk

For up to the minute media alerts, follow us on Twitter

Notes to editors:

The University of Nottingham is a research-intensive university with a proud heritage. Studying at the University of Nottingham is a life-changing experience and we pride ourselves on unlocking the potential of our students. We have a pioneering spirit, expressed in the vision of our founder Sir Jesse Boot, which has seen us lead the way in establishing campuses in China and Malaysia - part of a globally connected network of education, research and industrial engagement. Ranked 103rd out of more than 1,000 institutions globally and 18th in the UK by the QS World University Rankings 2022, the University’s state-of-the-art facilities and inclusive and disability sport provision is reflected in its crowning as The Times and Sunday Times Good University Guide 2021 Sports University of the Year. We are ranked eighth for research power in the UK according to REF 2014. We have six beacons of research excellence helping to transform lives and change the world; we are also a major employer and industry partner - locally and globally. Alongside Nottingham Trent University, we lead the Universities for Nottingham initiative, a pioneering collaboration which brings together the combined strength and civic missions of Nottingham’s two world-class universities and is working with local communities and partners to aid recovery and renewal following the COVID-19 pandemic.

More news…

Media Relations - External Relations

The University of Nottingham
C Floor, Pope Building (Room C4)
University Park
Nottingham, NG7 2RD

telephone: +44 (0) 115 951 5798
email: pressoffice@nottingham.ac.uk