Plant research seals importance of microbes for survival and growth

Friday, 20 November 2020

Scientists have revealed that plants have a ‘sealing’ mechanism supported by microbes in the root that are vital for the intake of nutrients for survival and growth.

Plant Scientists from the Future Food Beacon at the University of Nottingham have demonstrated that the mechanism controlling the root sealing in the model plant Arabidopsis thaliana influences the composition of the microbial communities inhabiting the root and reciprocally the microbes maintain the function of this mechanism. This coordination of plant-microbes plays an important part in controlling mineral nutrient content in the plant. The study has been published online by the journal Science.

Gabriel Castrillo of the Future Food Beacon and lead author on the research said: “In mammals the specialized diffusion barriers in the gut are known to coordinate with the resident microbiota to control nutrient flow. Although similar regulatory mechanisms of nutrient diffusion exist in plant roots, the contribution of the microbes to their function was unknown until now.

This study has, for the first time, shown the coordination between the root diffusion barriers and the microbes colonising the root. They combine to control mineral nutrient uptake in the plant, which is crucial for proper growth and reproduction. Understanding this could lead to the development of plants more adapted to extreme abiotic conditions, with an enhanced capacity for carbon sequestration from the atmosphere. Alternatively, plants with a high content of essential mineral nutrients and the capability to exclude toxic elements could be developed”

All living organisms have evolved structures to maintain a stable mineral nutrient state. In plant roots and animal guts these structures comprise specialized cell layers that function as gate-keepers to control the transfer of water and vital nutrients.

To perform this function, it is crucial that cells forming these layers are sealed together. These seals need to maintain integrity in the presence of local microbial communities. In animals, microbes inhabiting the gut are known to influence the intestinal sealing and, in some cases, this can cause diseases.

In roots, two main sealing mechanisms have been found: Casparian Strips, which seal cells together, and suberin deposits that influence transport across the cell plasma membrane. This research shows how these sealing mechanisms in multicellular organisms incorporate microbial function to regulate mineral nutrient balance.

Food security represents a pressing global issue. Crop production must double by 2050 to keep pace with global population growth. This target is even more challenging given the impact of climate change on water availability and the drive to reduce fertilizer inputs to make agriculture become more environmentally sustainable. In both cases, developing crops with improved water and nutrient uptake efficiency would provide a solution and this.

This discovery could lead to the development of new microbial approaches to control nutrient and water diffusion, presenting new opportunities to design more resilient crops, new feeding strategies and possible ways to harness carbon dioxide through carbon sequestration.

Story credits

More information is available from Dr Gabriel Castrillo on or Jane Icke, Media Relations Manager for the Faculty of Science at the University of Nottingham, on +44 (0)115 951 5751 or

Jane Icke - Media Relations Manager Science
Phone: 0115 7486462

Notes to editors:

The University of Nottingham

Our academics can now be interviewed for broadcast via our Media Hub, which offers a Quicklink fixed camera and ISDN line facilities at Jubilee campus. For further information please contact a member of the Press Office on +44 (0)115 951 5798, email

For up to the minute media alerts, follow us on Twitter

The University of Nottingham is a research-intensive university with a proud heritage. Studying at the University of Nottingham is a life-changing experience, and we pride ourselves on unlocking the potential of our students. We have a pioneering spirit, expressed in the vision of our founder Sir Jesse Boot, which has seen us lead the way in establishing campuses in China and Malaysia - part of a globally connected network of education, research and industrial engagement. Ranked 18th in the UK by the QS World University Rankings 2023, the University’s state-of-the-art facilities and inclusive and disability sport provision is reflected in its crowning as The Times and Sunday Times Good University Guide Sports University of the Year twice in three years, most recently in 2021. We are ranked seventh for research power in the UK according to REF 2021. We have six beacons of research excellence helping to transform lives and change the world; we are also a major employer and industry partner - locally and globally. Alongside Nottingham Trent University, we lead the Universities for Nottingham initiative, a pioneering collaboration which brings together the combined strength and civic missions of Nottingham’s two world-class universities and is working with local communities and partners to aid recovery and renewal following the COVID-19 pandemic.

More news…

Media Relations - External Relations

The University of Nottingham
C Floor, Pope Building (Room C4)
University Park
Nottingham, NG7 2RD

telephone: +44 (0) 115 951 5798