article

Scientists develop unique polymer coating to tackle harmful fungi

Friday, 05 June 2020
Scientists from the University of Nottingham have developed a new way to control harmful fungi, without the need to use chemical bioactives like fungicides or antifungals.

Scientists from the University of Nottingham have developed a new way to control harmful fungi, without the need to use chemical bioactives like fungicides or antifungals.

Fungi cause diverse, serious societal and economic problems in the UK and globally. As well as causing fatal diseases in humans, fungi devastate food crops and spoil valuable products and materials. This has led to an antifungals/fungicide industry worth around $30bn globally.

There are tight regulations around the use of fungicides and antifungals and there is also growing resistance of fungi to these agents.

In a paper published today in Science Advances, experts from the University’s Schools of Life Sciences, Pharmacy, and Engineering, show how they have developed an innovative solution to tackle fungi, by passively blocking fungal attachment to surfaces using a coating of (meth)acrylate polymers, and so negating the need to use potentially harmful anti-fungals or other bioactive chemicals.

Through previous work, the team found different combinations of fungicides which worked against fungi and also produced new understanding of preservative action against spoilage fungi.

Although these advances meant less use of certain fungicides and chemicals, frequent tightening of regulations around usage are restricting the take up of technologies that still rely on bioactive agents, while spread of resistance worsens the problem. Consequently, potential bioactive-free technologies for combatting fungi are highly attractive to the industry.

In this latest study, scientists show an alternative fungal control strategy, which doesn’t have the ‘killing affect’ of fungicides.

The team identified polymers that resist the attachment of different kinds of fungi, including pathogens. They screened hundreds of (meth)acrylate polymers in high throughput, identifying several that reduce attachment of the human pathogen Candida albicans, the crop pathogen Botrytis cinerea, and other fungi.

Fungi on different surfaces

Professor Simon Avery, from the School of Life Sciences at the University is a lead investigator on the paper, he said: “This is the first high-throughput study of polymer chemistries resisting fungal attachment.

“Our engagement to date with industry has highlighted a clear need for a new approach to control fungi and the major socioeconomic problems that they cause, as the value of existing strategies using bioactives (antifungals, fungicides) is eroded by growing resistance and regulations.

“This passive, anti-attachment technology that we have been developing addresses this need."

We have been able to show that different polymers are effective in resisting diverse fungi that have broad socio-economic impacts.”
Professor Simon Avery

Story credits

More information is available from Professor Simon Avery  from the School of Life Sciences  at the University of Nottingham, at simon.avery@nottingham.ac.uk

Charlotte Anscombe - Media Relations Manager - Faculty of Medicine and Health Sciences
Email: charlotte.anscombe@nottingham.ac.uk
Phone: 0115 748 4417
Location:

Our academics can now be interviewed for broadcast via our Media Hub, which offers a Globelynx fixed camera and ISDN line facilities at University Park campus. For further information please contact a member of the Communications team on +44 (0)115 951 5798, email  pressoffice@nottingham.ac.uk or see the Globelynx website for how to register for this service.

For up to the minute media alerts, follow us on Twitter

Notes to editors:

The University of Nottingham is a research-intensive university with a proud heritage, consistently ranked among the world's top 100. Studying at the University of Nottingham is a life-changing experience and we pride ourselves on unlocking the potential of our students. We have a pioneering spirit, expressed in the vision of our founder Sir Jesse Boot, which has seen us lead the way in establishing campuses in China and Malaysia - part of a globally connected network of education, research and industrial engagement. The University’s state-of-the-art facilities and inclusive and disability sport provision is reflected in its status as The Times and Sunday Times Good University Guide 2021 Sports University of the Year. We are ranked eighth for research power in the UK according to REF 2014. We have six beacons of research excellence helping to transform lives and change the world; we are also a major employer and industry partner - locally and globally. Alongside Nottingham Trent University, we lead the Universities for Nottingham initiative, a pioneering collaboration which brings together the combined strength and civic missions of Nottingham’s two world-class universities and is working with local communities and partners to aid recovery and renewal following the COVID-19 pandemic.

More news…

Media Relations - External Relations

The University of Nottingham
C Floor, Pope Building (Room C4)
University Park
Nottingham, NG7 2RD

telephone: +44 (0) 115 951 5798
email: pressoffice@nottingham.ac.uk