Research shows Black Holes can grow ‘hair’ when spinning

Tuesday, 08 December 2020

An international team of scientists have revealed that black holes can grow additional hair-like structures when spinning fast enough, a discovery that could give new insight into the behaviour of black holes.

Until now black holes have been thought to be fully characterized by just two quantities, mass and spin. For several years physicists have been investigating whether black holes can have additional structures - which would reveal the existence of new fundamental fields.

Researchers from the University of Nottingham collaborated with SISSA and IFPU Institute for Fundamental Physics of the Universe and CNRS & Sorbonne University that has used numerical simulations to show that black holes can spontaneously grow the simplest form of permanent hair (a scalar field) once they start spinning fast enough. The research has been published in Physical Review Letters.

Alexandru Dima, Astrophysicist of SISSA and INFN and first author of the paper explains: “In our work we have considered a wide class of extensions to Einstein’s theory of gravity that make interesting prediction in extreme regimes, such as the surroundings of black holes or neutron stars” says “While previous studies have already provided examples of “hairy” black hole solutions, we have shown for the first time, thanks to numerical simulations, that black holes can spontaneously grow the simplest form of permanent hair (a scalar field) once they start spinning fast enough.”

The researchers also describe the way in which rotation controls the hair growth mechanism. In Einstein’s theory of gravity and many of its extensions, mathematical theorems ensure that black holes cannot sustain hair. They eventually shed it away through the emission of gravitational waves. However, in the theories under consideration, once the black hole starts rotating faster than a certain threshold hair spontaneously grow, giving the black hole novel features.

Extensions of General Relativity

Physicists have been investigating possible extensions of General Relativity in order to solve theoretical issues linked to the ongoing search for a quantized theory of gravity or as potential explanations of the puzzles that still await in the “dark side” of gravitational physics, like dark energy or dark matter.

Professor Thomas Sotiriou led the research in Nottingham with support from PhD student Nicola Franchini who is now in a postdoctoral position at SISSA and IFPU.

Our results demonstrate that new physics can be quite elusive and only make an appearance when one looks carefully at the right type of black holes.
Professor Thomas Sotiriou

Collecting clues for future experiments

The results also offer additional theoretical indications for future experiments. “In particular” continues Dima, “our result suggests that, depending on the rotational velocity of the objects involved, the gravitational waves produced as a consequence of the merger of black hole binary systems might be consistently different from what was previously expected. In the near future, an observation of such an effect or lack thereof by gravitational-wave experiments would consequently allow us to falsify a wide class of alternative theories of gravity, or possibly discover novel hints of new physics beyond General Relativity”.

Story credits

More information is available from Professor Thomas Sotiriou on or Jane Icke, Media Relations Manager for the Faculty of Science at the University of Nottingham, on +44 (0)115 951 5751,

Jane Icke - Media Relations Manager Science
Phone: 0115 7486462

Notes to editors:

The University of Nottingham

Our academics can now be interviewed for broadcast via our Media Hub, which offers a Quicklink fixed camera and ISDN line facilities at Jubilee campus. For further information please contact a member of the Press Office on +44 (0)115 951 5798, email

For up to the minute media alerts, follow us on Twitter

The University of Nottingham is a research-intensive university with a proud heritage. Studying at the University of Nottingham is a life-changing experience, and we pride ourselves on unlocking the potential of our students. We have a pioneering spirit, expressed in the vision of our founder Sir Jesse Boot, which has seen us lead the way in establishing campuses in China and Malaysia - part of a globally connected network of education, research and industrial engagement. Ranked 18th in the UK by the QS World University Rankings 2023, the University’s state-of-the-art facilities and inclusive and disability sport provision is reflected in its crowning as The Times and Sunday Times Good University Guide Sports University of the Year twice in three years, most recently in 2021. We are ranked seventh for research power in the UK according to REF 2021. We have six beacons of research excellence helping to transform lives and change the world; we are also a major employer and industry partner - locally and globally. Alongside Nottingham Trent University, we lead the Universities for Nottingham initiative, a pioneering collaboration which brings together the combined strength and civic missions of Nottingham’s two world-class universities and is working with local communities and partners to aid recovery and renewal following the COVID-19 pandemic.

More news…

Media Relations - External Relations

The University of Nottingham
C Floor, Pope Building (Room C4)
University Park
Nottingham, NG7 2RD

telephone: +44 (0) 115 951 5798