Scientists trap krypton atoms to form one-dimensional gas

Monday, 22 January 2024

For the first time, scientists have successfully trapped atoms of krypton (Kr), a noble gas, inside a carbon nanotube to form a one-dimensional gas.

Scientists from the University of Nottingham’s School of Chemistry used advanced transmission electron microscopy (TEM) methods to capture the moment when Kr atoms joined together, one by one, inside a “nano test tube” container with diameter half a million times smaller than the width of a human hair. The research has been published in the journal of the American Chemical Society.

The behaviour of atoms has been studied by scientists ever since it was hypothesized that they are the basic units of the universe. The movement of atoms has significant impact on fundamental phenomena such as temperature, pressure, fluid flow and chemical reactions. Traditional spectroscopy methods can analyse the movement of large groups of atoms and then use averaged data to explain phenomena at the atomic scale. However, these methods don’t show what individual atoms are doing at a specific point in time.

The challenge researchers face when imaging atoms is that they are very small, ranging from 0.1 – 0.4 nanometres, and they can move at very high speeds of around 400 m/s in the gas phase, on the scale of the speed of sound. This makes the direct imaging of atoms in action very difficult, and the creation of continuous visual representations of atoms in real-time remains one of the most significant scientific challenges.

Carbon nanotubes enable us to entrap atoms and accurately position and study them at the single-atom level in real-time. For instance, we successfully trapped noble gas krypton (Kr) atoms in this study. Because Kr has a high atomic number, it is easier to observe in a TEM than lighter elements. This allowed us to track the positions of Kr atoms as moving dots.
Professor Andrei Khlobystov, School of Chemistry, University of Nottingham

Professor Ute Kaiser, former head of the Electron Microscopy of Materials Science group, senior professor at the University of Ulm, added: “We used our state-of-the-art SALVE TEM, which corrects chromatic and spherical aberrations, to observe the process of krypton atoms joining together to form Kr2 pairs. These pairs are held together by the van der Waals interaction, which is a mysterious force governing the world of molecules and atoms. This is an exciting innovation, as it allows us to see the van der Waals distance between two atoms in real space. It's a significant development in the field of chemistry and physics that can help us better understand the workings of atoms and molecules.”

The researchers utilised Buckminster fullerenes, which are football-shaped molecules consisting of 60 carbon atoms, to transport individual Kr atoms into nano test tubes. The coalescence of buckminsterfullerene molecules to create nested carbon nanotubes helped to improve the precision of the experiments. Ian Cardillo-Zallo, a PhD student at the University of Nottingham, who was responsible for the preparation and analysis of these materials, says: “Krypton atoms can be released from the fullerene cavities by fusing the carbon cages. This can be achieved by heating at 1200oC or irradiating with an electron beam. Interatomic bonding between Kr atoms and their dynamic gas-like behaviour can both be studied in a single TEM experiment.”

The group have been able to directly observe Kr atoms exiting fullerene cages to form a one-dimensional gas. Once freed from their carrier molecules, Kr atoms can only move in one dimension along the nanotube channel due to the extremely narrow space. The atoms in the row of constrained Kr atoms cannot pass each other and are forced to slow down, like vehicles in traffic congestion. The team captured the crucial stage when isolated Kr atoms transition to a 1D gas, causing single-atom contrast to disappear in the TEM. Nonetheless, the complementary techniques of scanning TEM (STEM) imaging and electron energy loss spectroscopy (EELS) were able to trace the movement of atoms within each nanotube through the mapping of their chemical signatures.

Professor Quentin Ramasse, Director of SuperSTEM, an EPSRC National Research Facility, said: ‘By focusing the electron beam to a diameter much smaller than the atomic size, we are able to scan across the nano test tube and record spectra of individual atoms confined within, even if these atoms are moving. This gives us a spectral map of the one-dimensional gas, confirming that the atoms are delocalised and fill all available space, as a normal gas would do.’

As far as we know, this is the first time that chains of noble gas atoms have been imaged directly, leading to the creation of a one-dimensional gas in a solid material. Such strongly correlated atomic systems may exhibit highly unusual heat conductance and diffusion properties. Transmission electron microscopy has played a crucial role in understanding the dynamics of atoms in real-time and direct space.
Professor Paul Brown, director of the Nanoscale and Microscale Research Centre

The team plans to use electron microscopy to image temperature-controlled phase transitions and chemical reactions in one-dimensional systems, to unlock the secrets of such unusual states of matter.

Story credits

More information is available from Professor Andrei Khlobystov, in the School of Chemistry at the University of Nottingham, on +44 (0) 115 951 3563,

Jane Icke - Media Relations Manager Science
Phone: 0115 7486462

Notes to editors:

About the University of Nottingham

Ranked 32 in Europe and 16th in the UK by the QS World University Rankings: Europe 2024, the University of Nottingham is a founding member of the Russell Group of research-intensive universities. Studying at the University of Nottingham is a life-changing experience, and we pride ourselves on unlocking the potential of our students. We have a pioneering spirit, expressed in the vision of our founder Sir Jesse Boot, which has seen us lead the way in establishing campuses in China and Malaysia - part of a globally connected network of education, research and industrial engagement.

Nottingham was crowned Sports University of the Year by The Times and Sunday Times Good University Guide 2024 – the third time it has been given the honour since 2018 – and by the Daily Mail University Guide 2024.

The university is among the best universities in the UK for the strength of our research, positioned seventh for research power in the UK according to REF 2021. The birthplace of discoveries such as MRI and ibuprofen, our innovations transform lives and tackle global problems such as sustainable food supplies, ending modern slavery, developing greener transport, and reducing reliance on fossil fuels.

The university is a major employer and industry partner - locally and globally - and our graduates are the second most targeted by the UK's top employers, according to The Graduate Market in 2022 report by High Fliers Research.

We lead the Universities for Nottingham initiative, in partnership with Nottingham Trent University, a pioneering collaboration between the city’s two world-class institutions to improve levels of prosperity, opportunity, sustainability, health and wellbeing for residents in the city and region we are proud to call home.

More news…

Media Relations - External Relations

The University of Nottingham
YANG Fujia Building
Jubilee Campus
Wollaton Road
Nottingham, NG8 1BB

telephone: +44 (0) 115 951 5798