Stimulating the body’s brown fat could be the answer to tackling obesity

Wednesday, 07 October 2020

New research shows that ‘brown fat’, the body’s own fat-fighting defences, can be mobilised by different physiological factors, and could be used help to tackle obesity.

Being overweight or obese is a major health risk, as shown in the greatly increased prospect of a worse outcome when suffering from COVID-19.

Fat in the human body is composed by three types of cells defined as white, beige or brown.

White fat stores energy, whilst brown - or good – fat produces heat by burning sugar and fat, often in response to cold. Increasing its activity improves blood sugar control as well as improving blood lipid levels and the extra calories burnt help with weight loss.

People with a lower body mass index (BMI) have a higher amount of brown fat.

Beige fat cells are located within white fat depots and can be induced into ‘burning energy’, as brown cells typically do. They are abundant in humans and could so be targeted for obesity management.

Two new studies from the groups of Professors Mike Symonds from the School of Medicine at the University of Nottingham and Virginie Sottile from the University of Pavia, Italy, have used stem cells to model how brown fat can be mobilised by physiological factors.

These studies provide new insights into the regulation of brown fat that could now be used to develop sustainable interventions to prevent obesity and diabetes.”
Professor Symonds

The first collaborative study, led by Dr Lugo Leija, from the Medical Technologies Innovation Facility in Nottingham, and published in the Journal of Cellular and Molecular Medicine, shows how fat cells produced from stem cells and stimulated under cold conditions, can remain metabolically active even once they have returned to warmer conditions.

These results suggest that the rapid adaptation occurring in fat cells in response to environmental changes, such as exposure to cold conditions, and typically associated with a favourable effect on metabolism, is partly retained over time.

This research could help design new treatments to control fat tissue characteristics in order to promote energy expenditure in obese patients -your total daily energy expenditure (TDEE) is the number of calories you burn each day.

In a second study led by Dr Ksenija Velickovic, from the University of Belgrade, and published in the journal Cellular Metabolism & Biochemistry, the team further showed for the first time that a small drug which inhibits glutamine synthesis, can prevent stem cells from becoming fat cells.

Blocking glutamine metabolism limited the formation of lipid droplets and changed the characteristics of the fat cells produced, suggesting that glutamine represents an important component of the cellular machinery leading to the accumulation of fat.

The collaborative team, involving researchers from the University of Nottingham’s School of Medicine, the University of Los Angeles and the Department of Molecular Medicine of the University of Pavia, will continue their work  look to  uncover how selective interference with glutamine metabolism in stem cells, normally destined to form fat cells, could be used to better control weight and improve health.

Story credits

More information is available from Professor Mike Symonds at

Charlotte Anscombe - Media Relations Manager - Faculty of Medicine and Health Sciences
Phone: 0115 748 4417

Notes to editors:

The University of Nottingham

Our academics can now be interviewed for broadcast via our Media Hub, which offers a Quicklink fixed camera and ISDN line facilities at Jubilee campus. For further information please contact a member of the Press Office on +44 (0)115 951 5798, email

For up to the minute media alerts, follow us on Twitter

The University of Nottingham is a research-intensive university with a proud heritage. Studying at the University of Nottingham is a life-changing experience, and we pride ourselves on unlocking the potential of our students. We have a pioneering spirit, expressed in the vision of our founder Sir Jesse Boot, which has seen us lead the way in establishing campuses in China and Malaysia - part of a globally connected network of education, research and industrial engagement. Ranked 18th in the UK by the QS World University Rankings 2023, the University’s state-of-the-art facilities and inclusive and disability sport provision is reflected in its crowning as The Times and Sunday Times Good University Guide Sports University of the Year twice in three years, most recently in 2021. We are ranked seventh for research power in the UK according to REF 2021. We have six beacons of research excellence helping to transform lives and change the world; we are also a major employer and industry partner - locally and globally. Alongside Nottingham Trent University, we lead the Universities for Nottingham initiative, a pioneering collaboration which brings together the combined strength and civic missions of Nottingham’s two world-class universities and is working with local communities and partners to aid recovery and renewal following the COVID-19 pandemic.

More news…

Media Relations - External Relations

The University of Nottingham
C Floor, Pope Building (Room C4)
University Park
Nottingham, NG7 2RD

telephone: +44 (0) 115 951 5798