logo
Department of
Chemical and Environmental Engineering
   
   
  
 

Image of George Zheng Chen

George Zheng Chen

Professor of Electrochemical Technologies; Department MSc Course Director, Faculty of Engineering

Contact

Biography

George Chen (CChem, FRSC, FRSA, FIMMM) received his Teaching Diploma (Jiujiang Teacher Training College, now Jiujiang University) in 1981, MSc (Fujian Normal University) in 1985, and PhD (University of London) and DIC (Diploma of Imperial College) in 1992. After postdoctoral research in the Universities of Oxford (1992) and Leeds (1994), he moved to the University of Cambridge (1996), taking up positions of Senior Research Associate (1998), and Assistant Director of Research (2001). In Cambridge, he was awarded the Schlumberger Interdisciplinary Research Fellowship (2000) and elected to Official Fellow (2003) of Darwin College. He joined the University of Nottingham as Reader in 2003, and was promoted to Professor in 2009. He has undertaken various research projects funded by e.g. the EPSRC, Royal Society, MoST, MoSTI and E.ON, with the outputs documented in over 490 publications, or adopted by the industry (e.g. The FFC Cambridge Process by Metalysis, and Supercapattery by E.ON). His h-index is 42 as reported by Web of Science, and 47 by Google Scholar.

Expertise Summary

Prof. Chen is specialised in electrochemical technologies, particularly in association with liquid salts (a collective term for high temperature molten salts and room temperature ionic liquids). His research aims to bring about technology innovations for materials, energy and environment. More specifically, his current work focuses on (a) nano-materials and liquid salts based energy storage systems, including supercapacitor, supercapattery (supercapacitor + battery) and redox flow cells (which are a type of rechargeable fuel cells), (b) production, processing and recycling of structural and functional materials, particularly titanium, silicon and polymer composites (e.g. thermochromic films, electron and/or ion conducting membranes), and (c) liquid salts supported carbon capture and reclamation(CCR) or conversion (CCC), and solar heat storage.

For teaching at undergraduate levels, Prof. Chen's interests are related with chemical thermodynamics, structural and functional materials, and process engineering. He also supervises postgraduate students at both MSc and PhD levels on research topics of, but not limited to, fundamental and materials electrochemistry, electrochemical technologies and engineering, liquid salts based processes and materials, energy conversion and storage, and CO2 capture and reclamation or conversion.

Teaching Summary

Prof. Chen is currently the Department's MSc Course Director, and supervises a dozen of postgraduate projects at both MSc and PhD levels. At the postgraduate level, he offers lectures on Energy… read more

Research Summary

On 30 Mar 2014, Web of Science and Google Scholar reported respectively 6530 and 7780 citations of Prof. Chen's publications, and an h-index of 42 and 46. His Researcher ID is A-4577-2009… read more

Selected Publications

The world is small. 世界很小。

Prof. Chen is currently the Department's MSc Course Director, and supervises a dozen of postgraduate projects at both MSc and PhD levels. At the postgraduate level, he offers lectures on Energy Storage (MSc/MEng) and Materials Electrochemistry (PhD). Prof. Chen has often been appointed as an internal examiner, and also an external examiner by other universities in the UK and abroad, for PhD and MSc theses, and MSc taught courses.

At undergraduate levels, he is currently one of the staff members demonstrating Year 3 laboratory. Between 2003 and 2013, Prof. Chen had lectured Engineering Materials to Year 2 Chemical Engineering students at Nottingham. He also taught Process Engineering Fundamentals to Year 1 Chemical Engineering students between 2005-2009.

Prof. Chen has continued his learning of new knowledge from the past to today, although using different methodologies. He likes the Chinese idiom: Of three travellers, one can always learn from the others (三人行, 必有我师).

Current Research

On 30 Mar 2014, Web of Science and Google Scholar reported respectively 6530 and 7780 citations of Prof. Chen's publications, and an h-index of 42 and 46. His Researcher ID is A-4577-2009 (http://www.researcherid.com/rid/A-4577-2009). His current research is summarised below.

1. Electrochemical science, engineering and technologies for materials, energy and environment

Clean technologies are the necessity of the 21st century and beyond. Fuel cells, batteries and electrochemical capacitors are clean for the energy consumption of human activities. Electrolysis, electro-synthesis, and electrochemical machining are clean for the production of materials and devices supporting human activities. The efficient use of these clean techniques, however, rely strongly on materials that enable and accommodate the relevant electrochemistry and also on innovations that further improve these techniques.

In the electrochemical engineering group led by Prof. Chen at Nottingham, methods are being developed for (1) the electrochemical production of engineering and functional materials (metals, ceramics, polymers, nano-materials, supramolecules and composites) and (2) the applications of novel materials in electrochemical devices, including fuel cells, supercapacitors, supercapatteries, rechargeable batteries, sensors, switchable membranes and etc. In particular, a core topic in Prof. Chen's research is the further understanding, improvement and application of the Fray-Farthing-Chen Cambridge Process. The electro-extraction of reactive, refractory and rare earths metals (pure or alloyed forms of Si, Ti, Zr, Nb, Ta, Cr, Mo, W, Nd, Sm and etc.) via the FFC Cambridge Process is being investigated in parallel with specialty devices or their components for medical and electrochemical applications.

Carbon based advanced materials, such as carbon nanotubes, electrically conducting polymers, and their composites, are another direction of Prof. Chen's research. Currently, composites of carbon nanotubes and functional materials (e.g. polypyrrole, manganese oxide, titanium dioxide) are being researched. In particular, the composites are and will be used to fabricate a new type of energy storage device, supercapattery, that combines the performance of supercapacitor and battery. Collaboration with experts of power electronics is ongoing to develop intelligent interfaces between for example the electric power grid and banks of supercapatteries. Prof. Chen is also researching on the preparation of other organic and inorganic materials based nano-composites (or hybrids) and their applications for energy efficiency and environment cleanup. More recent work has succeeded in efficient photo-electro-catalytic degradation of organic pollutants in water.

2. Liquid salts innovations

Liquid salts refer to "liquids of ions or ionic matters" disregarding temperatures, and hence include the traditional high temperature molten salts and the relatively new room temperature ionic liquids. By convention, molten is a state resulting from heating, and liquid is a condensed fluid under ambient conditions. The facts that both are salts in nature and work only in the liquid state have led the academic community to search for a common term for both, but such a term has not yet been universally accepted due to a number of reasons. Prof. Chen prefers the term of liquid salts because both words are well known to the general public.

Prof. Chen's research in ionic liquids (liquid salts at room temperatures) started in mid 2000, and has already made some meaningful progresses. Modulation of composition and structure in the composites of polymer and ionic liquid can lead to thermochromic behaviour in response to temperature variation. In Prof. Chen's recent work in collaboration with Wuhan University, China, these novel composites changed colour in the temperature range (e.g. 30 ~ 80oC) that is readily achievable under direct or indirect sunlight, and hence termed as solar-thermochromic composites. This finding signifies applications in many areas, but particularly the built environment for improved energy efficiency. For example, these materials may be applied in truly smart windows that can, at high summer temperatures, automatically reduce light transmittance through windows and hence the energy consumption for air conditioning and refrigeration.

Prof. Chen has also ongoing investigation on using liquid salts for (1) carbon capture and reclamation (CCR) or conversion (CCC), (2) solar heat transfer and storage, and (3) high voltage supercapacitors.

3. Fundamental understanding of new electrochemical processes and devices is a long term research interest of Prof. Chen. In this aspect, his research team has been studying (1) charge transfer at the three-phase interlines (3PIs) which are the main reaction sites in many electrochemical processes involving three or more phases of solids and liquids, (2) ion conduction mechanisms in polymer-nanomaterial composite membranes, (3) reference electrodes for liquid salts applications, particularly at elevated temperatures, and (4) materials based photo-electrochemical, thermo-electrochemical, piezo -electrochemical, and photo-thermochemical phenomena.

Past Research

The outcomes from Prof. Chen's past research have been been documented in 450+ publications, including patents, refereed journal papers, book chapters, invited and contributed presentations at seminars and conferences, and PhD and MSc theses. His research has been well recognised by international colleagues, receiving over 6230 citations and an h-index of 41 as recorded on 11 Nov 2013 by the Web of Knowledge. Google Scholar has listed him as one of the most cited authors in the University of Nottingham.

Future Research

Prof. Chen's future research will continue from his current work on electrochemical science, engineering and technologies for materials, energy and environment, focusing on liquid salts assisted innovations. National and international collaboration will play a key role to progress his research into greater width and depth. For updated information about Prof Chen and his research group, please visit their University Blog at http://blogs.nottingham.ac.uk/electrochemicaltechnologies/.

Department of Chemical and Environmental Engineering

The University of Nottingham
University Park
Nottingham, NG7 2RD


telephone: +44 (0) 115 951 4081
email:eng-student-support@nottingham.ac.uk