University of Nottingham



Robotics for In-situ Repair

Robotic systems for in-situ repair is one of the research areas in the MCM research team. We focus on developing novel miniaturised robotic systems, such as walking hexapods and continuum robots for inspection, maintenance and repair operations in challenging environments such as aero-engines and nuclear, for example.

Unlike other hyper-redundant cable driven robots, the continuum robots developed in the MCM gorup are constructed with multiple continuous sections capable of large bending angles (± 90° in arbitrary direction), enabling them to access into extremely confined spaces, like  aero engines. Based on the novel compliant-joint structure, the arm of the continuum robot have the state-of-the-art diameter/length ratio in the world (i.e. 0.023) and it can deliver various end effectors (e.g. camera and machining tools) for conducting the above mentioned operations, which enables to significantly reduce the down-time of the facilities.

Walking hexapods developed in our research group are derived from the Stewart platform. Unlike the conventional Stewart platform, its feet can be controlled to anchor/release from the ‘base’ and all the legs can be articulated for propelling itself to the remote area. Once the feet are anchored, the robot can perform 6-Degree-of-Freedom high precision machining operation (10 um). Hence, the hexapod can self-propel to deliver different end effectors for inspection and repair on the targets located in extreme environments (e.g. nuclear), shortening the shut-down time of the facility and removing human from the hazards.



Research and Development List

Here you can find information about our projects. 

MiRoR (Miniaturised Robotic systems for holistic in-situ Repair and maintenance works in restrained and hazardous environments)


Miniaturised Robotic systems for holistic in-situ Repair and maintenance works in restrained and hazardous environments (MiRoR) aims to develop a fundamentally novel concept of a Miniaturised Robotic Machine (Mini-RoboMach) system, that equipped with intelligence-driven and autonomous abilities, will be demonstrated for holistic in-situ repair and maintenance of large and/or intricate installations.

Tell me more





FLARE (Flame Spray Adder for in-situ Patch Repair of Aero-Engine Combustors)



ATI-approved project Flame Spray Adder for in-situ Patch Repair of Aero-Engine Combustors (FLARE), led by Rolls-Royce is a collaborative R&D project utilising continuum robot capability developed by the University of Nottingham, incorporating miniaturised flame spray equipment from Metallisation. There is significant market desire to create a device that can perform in-situ / on-wing patch repair of thermal barrier coatings without dismantling high value infrastructure, such as aircraft jet engines.

It is costly and time consuming for maintenance and overhaul activities to be completed whilst the engine is removed, it is more attractive to Rolls-Royce, airline customers and the aerospace sector’s supply chain to be able to perform more services with the engine still intact and attached to the aircraft. 

Tell me more




FreeHex (Free-leg Hexapod)


Free-leg Hexapod (FreeHex) aims to develop a miniature low force machining system, that offers features of light, compact, versatile and easily portable and can be temporarily attached to its workpiece for in-situ maintenance of large components and mechanical systems in restricted and hard to access environments.






Aeroengine compressor blades are sometimes damaged by ingested debris. Damaged blades can currently be repaired by highly-skilled Rolls-Royce engineers that travel to the location of the engine to remove the defect using slender grinding tools, an operation known as boreblending. Remote Inspection and Engine Repair is a project that aims to develop a portable, remotely controllable boreblending robot. Led by Rolls-Royce and funded by the ATI, the project aims to reduce the downtime associated with boreblending by allowing engineers to perform the task remotely over the internet.

The remote boreblending robot was demonstrated on a Trent XWB engine in Rolls-Royce, Derby, in January 2018.

RAIN (Robotics and Artificial Intelligence for Nuclear)

The nuclear industry has some of the most extreme environments in the world, with radiation levels and extremely harsh conditions restraining human access to many facilities.

Yet to date, robotic systems have had very little impact on the industry, even though it is clear that they offer major opportunities for improving productivity and significantly reducing risks to human health.

The RAIN initiative has been created to address these issues by developing the advanced robotics and artificial intelligence that will be essential for future nuclear operations. Their adoption will have the potential to completely transform the nuclear industry globally.

At the same time it is envisaged that the reliable, functional robotic systems that are the programme’s goal will also have important applications in other sectors. These will extend beyond extreme environments such as space exploration, in-orbit satellite design, offshore operations and mining to include less challenging areas where RAIN research will be highly relevant, such as healthcare and autonomous vehicles.

The programme’s overall objectives are to lower costs within the nuclear industry, reduce timescales, reduce risk, improve safety, promote remote inspection and reduce the chances of human exposure to radiation and other hazards. Once developed, the technologies that will help to realise these objectives are to form the foundation of a world-leading robotic and AI research and innovation ecosystem.

Tell me more

INSPECT (In-situ optical inspection of engine components)

With the civil aviation sector continuing to grow year-on-year, an ever increasing number of routine in-situ gas turbine inspections are undertaken by both gas turbine providers and their customers. Whilst these are critical for ensuring a high-level of aeroengine safety, they are time intensive, vary between inspectors, and offer limited data capture and assessment possibilities. Through the INSPECT consortium, an optical inspection system will be developed that can be permanently and retrofittably embedded into the gas turbine borescope ports. Upon engine shutdown, probes are automatically inserted into the engine gas path, providing a fast, frequent, and standardised compressor inspection after every operation.

INSPECT is a state-of-the-art inspection technology, enabling future Big Data Analytics, data mining, and trending. This will ultimately make RollsRoyce and its customers data rich and able to optimise flight paths, maintenance schedules, and possibly even OEM design.

 Tell me more



COBRA (Continuum Robot for Remote Applications)

Imagine if an engineer could inspect and repair a pipe deep within a nuclear reactor without having to get changed into a HAZMAT suit, or even perform an inspection and then repair a jet engine still attached to the wing of an aircraft, but from the comfort of their own home. COBRA (Continuum Robot for Remote Applications) aims to do just that. A consortium of industrial companies and academic institutions aims to design, develop and build a novel solution for remotely controlled specialist robots that will enable maintenance & repair tasks to be undertaken in extreme environments by teleoperation without compromising the health and safety of the operators.

COBRA will reduce lifecycle costs, provide rapid worldwide operational response to issues, and improve the safety and quality of high value installed infrastructures. The continuum robot (a.k.a. snake robot), will be long enough to be deployed in a range of pipe based nuclear fission and fusion scenarios, as well as small enough in diameter to be applicable to jet engine deployment through conventional inspection ports. The main objectives of COBRA include production of a full scale teleoperated prototype, inclusive of the control software, a range of shape sensors and two separate, interchangeable and innovative 'end effectors'. Firstly, a 3D camera to provide high resolution views of the environment and feed into an immersive interface with augmented reality elements. Secondly, a miniature laser processing head to allow robotic corrective action to take place. A miniature laser head has been developed by OpTek Systems Ltd for a specific application in Rolls-Royce Aerospace, but COBRA will develop the miniature laser control head to work in challenging new environments opening new markets for OpTek to exploit.

Tell me more


Soft crawling robots

soft robotics - gun
soft robotics-flip
soft robotics-crawl


The application of soft crawling robots (SCR) to real-world scenarios remains a grand challenge due to their limited deployment time to reach the target and accessibility to difficult-to-reach environments by any obstacles. To overcome these limitations, we propose a novel multimodal Tasering Twin Soft Robot (TTSR), carrying two SCRs, capable of i) passive flight and ii) wall climbing by deploying SCRs to target area. Each SCR is driven by two dielectric elastomer actuators and three electroadhesive feet. In the demonstration, the robot was launched by pneumatic pressure and flew over an obstacle. While flying, the SCRs were folded compactly to reduce the air drag and perched on a vertical wall 3 m away. Once perched, the SCRs reconfigured themselves by bistable mechanism and separated from each other. After that, the SCRs performed planar motion, and reached predefined locations on the wall. Moreover, the SCR can move across 15o-slope dihedral surface and inverted surface.

Tell me more



EyeGlove for Inspection and Measurement in Confined Environments

eyeglove 1
eyeglove 2
eyeglove 3


Industrial assets containing safety-critical assemblies (e.g. gas turbine engines, petrochemical apparatus) need to be periodically inspected. However, due to the restricted spaces, and sometimes unsighted areas in confined environments, inspection and measurement tasks can hardly be achieved using conventional rigid measurement tools. Human hands, as highly flexible and dexterous manipulators, can perform a variety of tasks in various environments, from daily life to challenging industry scenarios. Therefore, it is beneficial to design a vision-based wearable glove system that allows operators to utilize their dexterous hands as manipulator to achieve inspection and measurement tasks in confined environments. EyeGlove is a project that aims to develop a hand wearable device which gives user’s hands the ability to ‘see’ inside cramped environments when conducting inspection and measurement tasks by manipulating plurality of tiny finger-cameras. Developed by the Rolls-Royce University Technology Centre (UTC) in Manufacturing and On-Wing Technology at the University of Nottingham and funded by the REINSTATE project, EyeGlove play an important role in developing a portfolio of sensing, inspection and repair techniques for use within on-wing installed engines in the aerospace industry, as well as a variety of neighbouring sectors. 






Machining and Condition Monitoring

Faculty of Engineering
Jubilee Campus
Nottingham, NG8 1BB