Triangle

Course overview

Product design is the process of turning ideas into successful products. Using the latest manufacturing processes and technologies, our course combines design and creativity skills with engineering, science and technological knowledge.

You will be taught by teaching staff, experienced in areas including:

  • medical
  • office and kitchen equipment
  • electronic goods
  • automotive goods

Designers will support you to become confident in using digital presentational and prototyping techniques expected in industry. The course is very project-based and you are encouraged to submit your work to design competitions outside the university.

This fully accredited programme is a four-year masters degree and provides the preferred route to achieving Chartered Engineer status.

Explore our Product Design and Manufacture End of Year Show

Why choose this course?

6th

in the Complete University Guide for Manufacturing and Production Engineering

Complete University Guide, 2022

Top 20

UK department

The Times and The Sunday Times Good University Guide, 2021


Entry requirements

All candidates are considered on an individual basis and we accept a broad range of qualifications. The entrance requirements below apply to 2022 entry.

UK entry requirements
A level AAB
Required subjects

Maths is required.

Art or design and technology are also desirable as 2nd subjects for the course but are not required.

We do not accept the following A Levels: General Studies, Critical Thinking, Citizenship Studies, CIE Global Perspectives and Research, CIE Thinking Skills.

IB score 34 including Mathematics: Analysis and Approaches - 5 at Higher Level or 6 at Standard Level or Mathematics: Applications and Interpretation – 5 at Higher Level only. Visual Arts is desirable for the course (but not required).

BTEC or Access not accepted for MEng course.

Foundation progression options

A foundation year is available for those with BBB grades but not in the required subjects.

Learning and assessment

How you will learn

Teaching methods

  • Group study
  • Independent study
  • Lab sessions
  • Lectures
  • Supervision
  • Tutorials
  • Workshops

How you will be assessed

Assessment methods

  • Coursework
  • Dissertation
  • Examinations
  • Group coursework
  • Presentation
  • Research project
  • Practical assessment

Contact time and study hours

Engineers are among the busiest students on campus. On average, you will have around 20-22 contact hours a week in years one and two. Combined with coursework and self-study, you are likely to spend over 40 hours a week on your studies.

Our courses provide the opportunity to specialise through a choice of subject modules and practical work.

Study abroad

There are study abroad options for this course.

What is it like studying Product Design and Manufacture at the University of Nottingham?

Hear what our students have to say about studying Product Design and Manufacture at UoN.

Modules

The first year shares many modules with the department's other engineering degrees and will therefore give you a broad foundation in engineering science and design, manufacturing processes, material selection and behaviour, mathematics and business studies.

Core

Drawing for Design

This module will teach and develop skills in constructed and freehand drawing in perspective. It will teach you the rules of perspective drawing and basic pen control. You will develop their skills from sketching simple boxes to sketching complex forms with detail and contour lines.

You will progressively learn to add detail to their drawings and learn to draw quickly and neatly. You will be taught how light and shade can explain complex forms. You will learn how to use markers to add tonal work to sketches and to combine all these skills to produce sketch pages for design projects. The exercises will also help develop special awareness abilities and an appreciation of form.

Engineering Design and Design Project

This year long module introduces students to basic concepts and practice of design and manufacture with a semester long group and individual project. It includes the following topics:  

  • the process of design supported by practical design activities
  • engineering drawing 
  • solid modelling and drawing generation  
  • machine elements 
  • group Design Project with Integrated Individual Element  
  • machine shop practical training 

Student groups will undertake a different group design project in semester two aligned to their subject stream: Mechanical, Manufacturing Engineering or Product Design and Manufacture

Industrial Design Professional Practice

This module provides an introduction to Industrial Design; a brief history of its leading practitioners, its impact on popular culture, the role of the designer, design methodology and ethical responsibilities of the designer.

The module also contains sessions teaching design project practice, graphical skills used in design, photography and the production of a portfolio of skills for the first year of your course.

Materials and Manufacturing

This year long module introduces students to the properties of materials, the main failure mechanisms which a designer will be concerned with (e.g overload, fracture, creep, fatigue) and core manufacturing methods used in engineering applications.
It includes the following topics:

  • the role of materials and material properties in the design process
  • the selection and use of materials
  • the basic science underlying material properties and approaches to avoid failure of materials to provide the knowledge with which to design materials with better properties. For each property (or group of properties), a case study of practical design application will be addressed
  • an introduction to manufacturing in the UK 
  • an introduction to high value – low volume and low value – high volume manufacturing processes including: casting, machining, moulding, forming, powder processing, heat treatment, surface finishing and assembly
  • an introduction into additive manufacturing an introduction to manufacturing metrology 
Mathematics for Engineers

This module introduces a range of fundamental elementary mathematical techniques that can be applied to mechanical engineering, manufacturing and product design problems. It includes:

  • the calculus of a single variable, extended to develop techniques used in analysing engineering problems
  • techniques for solving selected first-order and second-order differential equations
  • the algebra of complex numbers to provide a key mathematical tool for analysis of linear mathematical and engineering problems
  • the complexity of solving general (large) systems of equations 
  • advanced differential and integral calculus of one variable
  • first-order ordinary-differential equations
  • algebra of complex numbers
  • matrix algebra and its applications to systems of equations and eigenvalue problems
  • functions and their properties
  • vector spaces and their applications
  • vector calculus
Statics and Dynamics

An introductory module covering analysis methods applicable to engineering design including:

  • review of basic mechanics: vectors, units, forces and moments, Newton’s laws
  • static equilibrium: force and moment analysis in design; frictional forces
  • free body diagrams and Pin-jointed structures
  • stress, strain and elasticity
  • multi-axial stress-strain; thin walled vessels under pressure
  • shear stress and torsion of shafts
  • plane stress; Mohr's circle analysis
  • beam bending: shear force and bending moment diagrams
  • second moments of area of cross-sections
  • bending stresses in beams 
  • linear and rotational motion: displacement, velocity and acceleration
  • relationship between angular and linear motion
  • newton's Laws for linear and rotational motion
  • linear and Angular Momentum, including conservation of momentum
  • work, energy and power, including kinetic and potential energy
  • geared systems
  • drive systems, including tangential drives and vehicles
  • load characteristics and steady-state characteristics
  • flywheel design
  • static and dynamic balancing
The above is a sample of the typical modules we offer but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. Modules (including methods of assessment) may change or be updated, or modules may be cancelled, over the duration of the course due to a number of reasons such as curriculum developments or staffing changes. Please refer to the module catalogue for information on available modules. This content was last updated on Tuesday 14 September 2021.

You will develop further design skills and commercial awareness in year two. There are several design projects throughout the year, complemented by modules in the areas of design techniques, manufacturing, ergonomics and business.

Core

Design for Manufacture

The aim of this module is to develop knowledge, understanding and practical skills in design for manufacturing and manufacturing and product development. It covers design for manufacturability, design for assembly, rapid prototyping and manufacturing, jigs and fixtures, process planning and group technology and design for cost. You’ll spend two hours in lectures and three hours in practicals each week when studying this module.

Design Communication
Industrial Design and Professional Practice 2
Materials in Design

This module aims to introduce students to methodologies for materials selection and process selection for design improvement. This module seeks to develop an understanding of the role of materials in the design of a range of components, from consumer goods to large scale structures.

User Centred Research and Design
Design Projects
Group Design Project

This project involves 3 or 4 students working as a team to design a product from initial concept to fully engineered drawings. Starting from a design brief prepared by the supervisor, the group will be required to devise and evaluate alternative design concepts, undertake the detailed engineering analysis and mechanical design, select suitable materials and methods of manufacture and assess costs and the marketability of the product. 

The above is a sample of the typical modules we offer but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. Modules (including methods of assessment) may change or be updated, or modules may be cancelled, over the duration of the course due to a number of reasons such as curriculum developments or staffing changes. Please refer to the module catalogue for information on available modules. This content was last updated on

You continue to develop design skills through project work and the modules studied become more in-depth. This includes a major design project undertaken in the final semester along with a dissertation.

Core

Materials and Manufacturing 3

Optional

Human Computer Systems
Industrial Design and Professional Practice 3
Physical Ergonomics

This module aims to equip students with fundamental knowledge and skills regarding the physical characteristics of people (body size, strength, flexibility, etc.) and environments (lighting, thermal, sound, etc.) as they relate to the design of products, workplaces and tasks/jobs. You’ll spend two hours in lectures each week when studying this module.

Fourth Year MEng Product Design Projects

This is a project based module for Product Design and Manufacture. The module comprises of two projects. Specifically; in the first project, students will further develop ‘People Centred Research’ skills to find creative approaches that are innovative. In the second project, students will work for a “client” presenting concepts for their client’s selection. You’ll spend 12 hours working practically each week when studying this module.

Materials and Manufacturing 4

Plus optional modules

Computer Aided Engineering

In this module you will start to develop one of the key skills for an engineer – that of being able to program. You will gain the skills required to analyse, design and implement solutions to practical engineering problems through the use of computer aided design tools and the development of software based solutions.

Fibre Reinforced Composites Engineering (spring)

An introductory module on the design, manufacture and performance of fibre-reinforced composite materials. 

Constituent materials including fibres, resins and additives are described. Processing techniques and the relationships between process and design are highlighted. Design methodologies and computer-aided engineering techniques are demonstrated for component design. Case studies from a variety of industries including automotive and aerospace are presented.

Method and Frequency of Class:

Activity Number of Weeks Number of sessions Duration of a session
Lecture 12 weeks 1 week 2 hours

 Method of Assessment:

Assessment Type Weight Requirements
Exam 1 100.00 2 hour exam
Introduction to Marketing

This module is primarily intended for non-Business School students. This module aims to introduce the concept of marketing as an approach to business and to discuss the nature of marketing strategy. You’ll investigate the challenges of managing the marketing mix. You’ll spend two hours in lectures and one hour in a seminar each week when studying this module.

Joining Technology (spring)

This module examines, in-depth, the processes used for joining metallic (e.g. steel, aluminium and titanium alloys) and non-metallic (e.g. polymers and fibre reinforced composites) materials. 

Topics covered include:

  • mechanical joining
  • adhesive bonding
  • soldering and brazing
  • solid state joining (friction welding and diffusion bonding)
  • fusion welding (arc welding and the many classes thereof, resistance, electron beam and laser welding)

The fundamental characteristics of the various processes are examined along with procedures for practical applications. The origins of defects within joints and methods needed to control or eliminate them are also considered. The mechanical behaviour of joints is analysed, as is the effect of joining on the microstructural characteristics and mechanical properties of the base materials. Other features such as residual stress and distortion are addressed. Attention is also given to appropriate design for manufacture in a modern manufacturing context.

Method and Frequency of Class:

Activity Number of Weeks Number of sessions Duration of a session
Lecture 12 weeks 1 week 2 hours

 Method of Assessment:

Assessment Type Weight Requirements
Coursework 1 25.00 Case study review
Exam 1 75.00 1 hour 30 minute unseen written exam
Making Metals Perform (Autumn)

This module covers the principles and practice relating to processing, structure and properties of engineering alloys. The emphasis is on understanding the importance of process control to achieve desired properties through the formation of correct microstructural features.

Topics covered include:

  • equilibrium microstructural development - construction and interpretation of phase diagrams including quantitative prediction of microstructure
  • the kinetics of phase transformations - the TTT diagram and diffusionless transformations
  • thermal processing such as precipitation hardening, heat treating and annealing
  • forming operations for metal alloys
  • practical examples using important metal alloy systems such as steels, aluminium alloys and Nickel superalloys.

Method and Frequency of Class:

Activity Number of Weeks Number of sessions Duration of a session
Lecture 11 weeks 1 week 2 hours

 Method of Assessment:

Assessment Type Weight Requirements
Exam  100.00 2 hour exam
Management Studies

This module introduces students to modern management methods relevant to the running of a company. Topics include: introduction to basic economics; the essential requirements and aims of a business; preparing a business plan; accounting; interpretation of accounts; programme management; the essentials of “lean” manufacture and the management of innovation. You’ll spend two hours in lectures each week when studying this module.

Polymer Engineering (autumn)

A broad-based module covering the chemistry, material properties and manufacturing methods relevant to polymers.

Topics include:

  • Polymer chemistry and structure
  • Routes to synthesis, polymerisation techniques, practical aspects of industrial production
  • Viscoelasticity, time-temperature equivalence
  • Rheology of polymer melts, heat transfer in melts, entanglements
  • Properties of solid polymers, yield and fracture, crazing
  • Manufacturing with polymers, extrusion, injection-moulding
  • Design/ processing interactions for plastic products

Method and Frequency of Class:

Activity Number of Weeks Number of sessions Duration of a session
Lecture 11 weeks 1 week 2 hours
Seminar 11 weeks 1 week 1 hour

 Method of Assessment:

Assessment Type Weight Requirements
Coursework 1 25.00 Report on multidisciplinary design exercise covering the chemistry, processing and properties of a polymeric product
Exam 1 75.00 2 hour exam
Simulation, Virtual Reality and Advanced Human-Machine Interface (autumn)

For human factors/ergonomics work, simulation tools can enable designers, managers and end-users to experience products and systems in realistic, interactive environments. Such advancements have significant cost implications, enabling designs and their implications to be visualised early in the development life cycle. In addition, virtual/augmented reality and other advanced human-machine interfaces (HMIs) are being developed in many different industries to support different user needs.

This module will provide you with the knowledge and skills required to understand and utilise computers as human factors tools for understanding peoples’ interactions with new technology. Moreover, the module will consider HMIs that are increasingly common in modern life and frequently designed and evaluated using simulation techniques.

The module is a mix of practical and research-oriented content, and you will make extensive use of the simulation facilities and on-going research projects within the Human Factors Research Group and elsewhere in the University.

Topics include:

  • virtual reality technologies/environments/interfaces
  • augmented reality; fidelity and validity of simulators
  • presence factors for simulation
  • understanding and minimising simulator sickness
  • multimodal interfaces including the use of natural language and gesture interfaces, computers and collaborative/social interfaces, accessibility, in-car interfaces 

Delivery

Activity Number of Weeks Number of sessions Duration of a session
Lecture 11 weeks 1 week 2 hours
Practicum 11 weeks 1 week 2 hours

Assessment method

Assessment Type Weight Requirements
Coursework 1 50.00 Report (approx. 3,000 words) on the use of simulation to aid in the design/evaluation of specific products
Coursework 2 50.00 Presentation arguing for the use of advanced Human-Machine Interface solutions in a specific design context
The above is a sample of the typical modules we offer but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. Modules (including methods of assessment) may change or be updated, or modules may be cancelled, over the duration of the course due to a number of reasons such as curriculum developments or staffing changes. Please refer to the module catalogue for information on available modules. This content was last updated on

The project-based approach continues in year four with work that follows a more intensive industry-related route. A major design project is undertaken in the final semester along with a technical review of a manufacturing company.

Core

Cognitive Ergonomics in Design

This module will provide you with a thorough understanding of cognitive ergonomics and the way in which the consideration of cognitive ergonomics can impact on human performance in the workplace. 

Fourth Year MEng Product Design Projects

This is a project based module for Product Design and Manufacture. The module comprises of two projects. Specifically; in the first project, students will further develop ‘People Centred Research’ skills to find creative approaches that are innovative. In the second project, students will work for a “client” presenting concepts for their client’s selection. You’ll spend 12 hours working practically each week when studying this module.

Major Project with Industry

The develops and showcases the design skills of the student. The project will look in detail at the design solution and the manufacturing of the product. The project will be carried out in conjunction with the student’s company review which will bring a great deal of realism to the project. This work will form the basis of the end of course exhibition. You’ll spend 20 hours working practically each week when studying this module.

Project Management
Project management skills are a highly transferable skill directly relevant to employment sectors. The module will cover the fundamentals of project management, including project lifecycles, leadership in project management, managing risk in projects, analysis of project successes and failures and project management software. Students will produce a documented project management outline tailored to their research project to identify the key constraints, bottlenecks and milestones. This will be supplemented by the production of appropriate project management visualisation diagram, ie a Gantt or PERT chart. They will also present an interim verbal report to their supervisors and the module convenor to rehearse such reporting skills.

Optional

Computer Aided Engineering

In this module you will start to develop one of the key skills for an engineer – that of being able to program. You will gain the skills required to analyse, design and implement solutions to practical engineering problems through the use of computer aided design tools and the development of software based solutions.

Engineering Sustainability
Making Metals Perform (Autumn)

This module covers the principles and practice relating to processing, structure and properties of engineering alloys. The emphasis is on understanding the importance of process control to achieve desired properties through the formation of correct microstructural features.

Topics covered include:

  • equilibrium microstructural development - construction and interpretation of phase diagrams including quantitative prediction of microstructure
  • the kinetics of phase transformations - the TTT diagram and diffusionless transformations
  • thermal processing such as precipitation hardening, heat treating and annealing
  • forming operations for metal alloys
  • practical examples using important metal alloy systems such as steels, aluminium alloys and Nickel superalloys.

Method and Frequency of Class:

Activity Number of Weeks Number of sessions Duration of a session
Lecture 11 weeks 1 week 2 hours

 Method of Assessment:

Assessment Type Weight Requirements
Exam  100.00 2 hour exam
Simulation, Virtual Reality and Advanced Human-Machine Interface (autumn)

For human factors/ergonomics work, simulation tools can enable designers, managers and end-users to experience products and systems in realistic, interactive environments. Such advancements have significant cost implications, enabling designs and their implications to be visualised early in the development life cycle. In addition, virtual/augmented reality and other advanced human-machine interfaces (HMIs) are being developed in many different industries to support different user needs.

This module will provide you with the knowledge and skills required to understand and utilise computers as human factors tools for understanding peoples’ interactions with new technology. Moreover, the module will consider HMIs that are increasingly common in modern life and frequently designed and evaluated using simulation techniques.

The module is a mix of practical and research-oriented content, and you will make extensive use of the simulation facilities and on-going research projects within the Human Factors Research Group and elsewhere in the University.

Topics include:

  • virtual reality technologies/environments/interfaces
  • augmented reality; fidelity and validity of simulators
  • presence factors for simulation
  • understanding and minimising simulator sickness
  • multimodal interfaces including the use of natural language and gesture interfaces, computers and collaborative/social interfaces, accessibility, in-car interfaces 

Delivery

Activity Number of Weeks Number of sessions Duration of a session
Lecture 11 weeks 1 week 2 hours
Practicum 11 weeks 1 week 2 hours

Assessment method

Assessment Type Weight Requirements
Coursework 1 50.00 Report (approx. 3,000 words) on the use of simulation to aid in the design/evaluation of specific products
Coursework 2 50.00 Presentation arguing for the use of advanced Human-Machine Interface solutions in a specific design context
Systems Engineering and Human Factors

The aims of the module are to enable students to understand the nature of systems. You will be introduced to systems engineering and you will learn methods of establishing and representing systems requirements to feed into the design process. You’ll spend two hours in lectures each week when studying this module.

The above is a sample of the typical modules we offer but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. Modules (including methods of assessment) may change or be updated, or modules may be cancelled, over the duration of the course due to a number of reasons such as curriculum developments or staffing changes. Please refer to the module catalogue for information on available modules. This content was last updated on

Fees and funding

UK students

£9,250
Per year

International students

To be confirmed in 2021*
Keep checking back for more information
*For full details including fees for part-time students and reduced fees during your time studying abroad or on placement (where applicable), see our fees page.

If you are a student from the EU, EEA or Switzerland starting your course in the 2022/23 academic year, you will pay international tuition fees.

This does not apply to Irish students, who will be charged tuition fees at the same rate as UK students. UK nationals living in the EU, EEA and Switzerland will also continue to be eligible for ‘home’ fee status at UK universities until 31 December 2027.

For further guidance, check our Brexit information for future students.

Additional costs

As a student on this course, you should factor some additional costs into your budget, alongside your tuition fees and living expenses.

The following are based on the total four years of the course. You should be able to access most of the books you’ll need through our libraries, though you may wish to purchase your own copies or more specific titles which could cost up to £200.

Although most graphical materials for use in design projects are supplied there will be some Items you will have to buy, budget around £180 for this. Additionally, design projects have printing costs and you should budget for around £150.

Please note that these figures are approximate and subject to change. (Printing presentation material is currently under review and could be eliminated completely by the time your course starts).

Scholarships and bursaries

Scholarships and bursaries

The University of Nottingham offers a wide range of bursaries and scholarships. These funds can provide you with an additional source of non-repayable financial help. For up to date information regarding tuition fees, visit our fees and finance pages.

Faculty-specific funding

In addition to the above, students applying to the Faculty of Engineering may be eligible for faculty-specific or industry scholarships.

Home students*

Over one third of our UK students receive our means-tested core bursary, worth up to £1,000 a year. Full details can be found on our financial support pages.

* A 'home' student is one who meets certain UK residence criteria. These are the same criteria as apply to eligibility for home funding from Student Finance.

International students

We offer a range of international undergraduate scholarships for high-achieving international scholars who can put their Nottingham degree to great use in their careers.

International scholarships

Careers

Along with an accredited engineering degree you will have gained the practical and theoretical skills needed to improve the production systems for manufacturing industrial products and assemblies efficiently. Your transferable skills will also include effective communication skills and problem solving.

Our graduates work for a diverse range of employment sectors with companies including:

  • Jaguar Land Rover
  • Tata Steel
  • Procter & Gamble
  • Rolls-Royce
  • Ford
  • Thales

Average starting salary and career progression

83.2% of undergraduates from the Department of Mechanical, Materials and Manufacturing Engineering secured graduate level employment or further study within 15 months of graduation. The average annual salary for these graduates was £29,073.*

* HESA Graduate Outcomes 2020. The Graduate Outcomes % is derived using The Guardian University Guide methodology. The average annual salary is based on graduates working full-time within the UK.

Studying for a degree at the University of Nottingham will provide you with the type of skills and experiences that will prove invaluable in any career, whichever direction you decide to take.

Throughout your time with us, our Careers and Employability Service can work with you to improve your employability skills even further; assisting with job or course applications, searching for appropriate work experience placements and hosting events to bring you closer to a wide range of prospective employers.

Have a look at our careers page for an overview of all the employability support and opportunities that we provide to current students.

The University of Nottingham is consistently named as one of the most targeted universities by Britain’s leading graduate employers (Ranked in the top ten in The Graduate Market in 2013-2020, High Fliers Research).

The Institution of Engineering and Technology (IET)

This course is accredited by the IET (Institution of Engineering and Technology) to meet the further learning requirements of a Chartered Engineer.

Dummy placeholder image
" With a passion for producing problem-solving innovations which have positive societal impacts, I have enjoyed spending the last 4 years working on an array of creative, skill-broadening projects. "
Keval Patel

Related courses

Important information

This online prospectus has been drafted in advance of the academic year to which it applies. Every effort has been made to ensure that the information is accurate at the time of publishing, but changes (for example to course content) are likely to occur given the interval between publishing and commencement of the course. It is therefore very important to check this website for any updates before you apply for the course where there has been an interval between you reading this website and applying.