Triangle Skip to content
Exit nav

Course overview

Microbiologists have an important role in helping to prevent disease, develop new treatments and keep food safe.

At Nottingham, you'll spend a lot of time in our Super Lab gaining hands-on lab experience. You'll study the micro-organisms which affect human, animal and plant health. You'll find out how to use microbes to make medicines and vaccines.

What you'll study

You'll understand the use of good and bad bacteria, and learn different methods needed for the safe handling of level 2 pathogens. These are biological agents that can cause disease including Staphylococcus aureus, Listeria and Salmonella. 

You will learn:

  • Sterile technique
  • The mechanisms of anti-microbial resistance
  • How to identify pathogenic bacteria

When you graduate you will be qualified to work with microbial pathogens. This means you can work in a laboratory in research or a pharmaceutical company.

Topics include:

  • genetics and gene expression
  • immunology
  • medical microbiology
  • cell biology
  • microbial physiology
  • virology

Why choose this course?

  • 100% student satisfaction in the National Student Survey 2020
  • Explore different areas of microbiology; disease, health, food and the environment
  • Accredited by the Royal Society of Biology
  • Industry placement team support you to apply for placements for real-life experience
  • One-to-one support on your research project from academic supervisors and lab mentors
  • Study abroad to gain an international perspective

Entry requirements

All candidates are considered on an individual basis and we accept a broad range of qualifications. The entrance requirements below apply to 2021 entry.

UK entry requirements
A level offer AAB-ABB, including two science-based subjects
IB score 34-32 including 5 in two science subjects at Higher Level

A levels

AAB-ABB, including two science-based subjects.

Accepted subjects include: biology, chemistry, physics, maths and geography.

General studies, critical thinking, citizenship studies and leisure studies are not accepted.

We may also consider ABC depending on predicted grades in specific subjects.

Learning and assessment

How you will learn

Teaching methods

  • Computer labs
  • Lab sessions
  • Lectures
  • Seminars
  • Tutorials
  • Workshops
  • Problem-based learning

How you will be assessed

We use a range of assessment methods, including exams, essays, verbal presentations and practicals. You will receive a copy of our marking criteria which provides guidance on how we will assess your work. Your work will be marked on time and you will receive regular feedback.

Your final degree classification will be based on marks gained in your second and third years of study.

You must pass each year to progress. This typically means that you will need to achieve marks of at least 40% in each module. Full details on our marking criteria and structure will be provided at your induction.

To study abroad as part of your degree, you must meet minimum academic requirements in year one.

Assessment methods

  • Coursework
  • Group project
  • Lab reports
  • Oral exam
  • Poster presentation
  • Research project
  • Written exam

Contact time and study hours

In your first year, you will take 120 credits in core modules. As a guide, one credit equals approximately 10 hours of work. You will spend around half of your time in lectures, seminars and practicals. The remaining time will be independent study. Core modules are typically taught by professors or associate professors. PhD students supervise or demonstrate in some practical classes.

Study abroad

We offer designated support to guide through the entire process of studying abroad:

  • study in Australia or Canada. We'll help you apply to spend a semester of your second year at one of our highly ranked international partner universities
  • study in France, Austria or Spain for an additional year between years two and three
  • the university offers a wide range of summer schools worldwide

Year in industry

We have excellent links with companies, and can help to find the best placement for you. Often a placement year can help you to secure to a graduate job.

Our students have been on placement with:

  • GlaxoSmithKline
  • Newquay Zoo
  • Long Clawson Dairy
  • RedX Pharma

The industry placement takes place between years two and three of your degree. You can apply during year two of your degree, subject to meeting minimum academic requirements.

Modules

Micro-organisms and Disease

This module introduces you to a range of important human pathogens. You'll cover:

  • human pathogen interactions with the immune system
  • mechanisms of disease causation
  • the laboratory procedures involved in diagnosis and treatment of infections

Each week you’ll spend four hours in lectures to study for this module. This is a 10 credit module.

The Physiology of Microbes

This module will develop your knowledge of bacterial cell structures and growth. You'll understand the mechanisms that allow bacteria to respond to their environment. You'll study:

  • how to handle data commonly used in microbiological experimentation
  • basic practical methods required for all microbiological laboratory work

You'll learn through a three hour practical and four hours of lectures each week. This is a 20 credit module.

Microbes and You

Through this module, you will be given perspective on how microbes interact with humans, animals, plants and other organisms.

You'll study:

  • how they influence environmental processes
  • how microbial products contribute to healthcare, food production, and manufacturing
  • the influence of technological developments
  • scientific understanding of microbes and the public perception of them

This is a 20 credit module.

Applied Genetics

In a series of lectures, workshops and practicals you’ll further develop your understanding of gene structure, function and regulation and investigate how this knowledge can be applied in recombinant DNA technology through DNA sequencing and genetic engineering. Specialist options within animal, plant and microbial spheres will allow for subject specific applications of genetic techniques and theories which form an underpinning knowledge base for subsequent modules.

Biochemistry -The Building Blocks of Life

Have you ever wondered how some crops can resist diseases? This module provides you with the fundamentals for understanding biochemical processes in living organisms. You’ll be introduced to the basic structure, properties and functions of the four key biological macromolecules: nucleic acids, proteins, carbohydrates and lipids. You’ll also look at the metabolic pathways occurring in cells, such as respiration, photosynthesis and the biosynthetic pathways for the key macromolecules. In addition to lectures, you’ll have practical laboratory sessions to learn how to use key biochemical techniques for the separation and analysis of macromolecules and measurement of the metabolic process.

Genes and Cells

Cells are the basic functional units of life, but how do they grow and develop? In this module, you’ll follow the lifecycle of cells. You'll focus on mitosis, meiosis, cell division and differentiation. We’ll put cells not just under the microscope, but use advanced laboratory technologies to explore the ultrastructure of cells. These are the parts of cells too small to be seen through ordinary laboratory equipment. You’ll then put this science to the test, to apply cellular biology to applied genetics.

You’ll study:

  • structures and ultrastructures of animal and plant cells
  • microscopic features of bacteria and viruses
  • gene replication, expression and inheritance
  • laboratory methods used to discover how cells work
Introduction to Biotechnology

The aim of the module is to introduce the you to the broad based biotechnology discipline. You will study plants, animals and microbial systems and the impact and ethics of biotechnology in different sectors. An active learning approach is coupled with tutorials to understand the impact of the discipline. This is a 10 credit module.

Biosciences Tutorials and Foundation Science

The tutorials component of this module is intended to enhance your transition into university and guide you through the academic expectations of your degrees. This part of the module is spread throughout the year and includes three generic sessions on ‘study skills and plagiarism’, ‘study opportunities’ and ‘career and personal development’, and a series of small group tutorials with your academic tutor to develop generic skills such as finding crucial information, oral presentation, data handling and presentation of results, preparation for examinations, and essay writing skills relevant to biosciences.

The Foundation Science content has three elements: chemistry, maths and statistics and physics. The chemistry element will include: elements and periodic table; atomic structure and bonding; intermolecular attractions, chemical equilibrium; acids and bases, oxidation and reduction; rates of reaction; basic organic chemistry, isomerism, and rings.  The Maths and Stats element will include: calculations, algebra, functions and relationships, powers, logarithms, descriptive statistics, significance, regression and presenting data. The Physics element will include: units and dimensions; power, energy and heat; light and the electromagnetic spectrum; attenuation/absorption; and radioactivity.

There is also an IT element, which interfaces with generic IT training for undergraduates provided within the University.

The above is a sample of the typical modules we offer but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. Modules may change or be updated over the duration of the course due to a number of reasons such as curriculum developments or staffing changes. Please refer to the module catalogue for the latest information on available modules.

Core modules

Analysis of Bacterial Gene Expression

This module covers the major techniques required for analysis of gene expression including methods for gene sequence and transcriptional analysis. An in depth study of vectors and gene constructs provides an understanding of the different strategies used in creating mutants and identifying gene function in bacteria. As well as practical's, the coursework exercises are designed to illustrate the topics covered in the lecture course and will give students experience of experimental design and critical analysis of research data and an introduction to bioinformatics for the analysis of DNA and protein sequences.

Bacterial Biological Diversity

This module is designed to provide an understanding of the extent of bacterial biological diversity. Following introductory lectures on bacterial taxonomy and classification and web-page design, you’ll undertake two student-centred exercises. The first will be the production of an essay on a chosen organism covering its taxonomy, biology and ecology. The second will be a group exercise to design a web site including the material collated for the essay.

Medical Microbiology

This module will introduce you to the properties, mechanisms of resistance and clinical use of antimicrobial agents in the treatment of microbial infections. Options relating to disease prevention will be explained, and you’ll be provided with an insight into the role of the laboratory and the Public Health Laboratory Service in the diagnosis, management and control of infection in hospital and the community. During an average week, you’ll have a three hour lecture to study for this module.

Virology

The module will provide an introduction to viruses and their interactions with their hosts (bacteria, plants and animals including humans) as well as discussing the structure of viruses and their significance including pathogenesis and molecular biology. You’ll spend four hours per week in lectures studying for this module.

Microbial Mechanisms of Foodborne Disease

This module provides a fundamental understanding of the microorganisms causing food-borne disease. You'll learn about the mechanisms by which they do this and their routes of transmission.

In laboratory practicals you will learn a number of core practical methods needed for the safe handling, culture, isolation, enumeration and identification of a range of level 2 pathogens.These are biological agents that can cause disease including Staphylococcus aureus, Listeria and Salmonella. 

Research Techniques for Bioscientists

You'll cover the core research process and data analysis skills including literature searches, data collection and processing, and statistical analysis. This will prepare you for your third year research project. Research projects are also selected during this module.

Optional modules

Infection and Immunity

You will study microbiology, learning about pathogenic microbes including viruses, fungi, parasites and the roles of bacteria in health and disease. You will learn how the body generates immunity; the causes of diseases associated with faulty immune responses will be considered. In applied microbiology you will be introduced to recombinant DNA technology and prokaryotic gene regulation.

The Genome and Human Disease

In this module you will learn about the structure and function of the eukaryotic genome, including that of humans, and the approaches that have led to their understanding. You will learn about techniques that are employed to manipulate genes and genomes and how they can be applied to the field of medical genetics. By using specific disease examples, you will learn about the different type of DNA mutation that can lead to disease and how they have been identified. Practical elements will teach you about basic techniques used in medical genetics such as sub-cloning of DNA fragments into expression vectors. Practical classes and problem based learning will be used to explore the methods used for genetic engineering and genome manipulation.

Bacterial Genes and Development
Molecular events that occur during the control of gene expression in bacteria will be explored. You'll learn by considering case studies, which will show you how complex programmes of gene action can occur in response to environmental stimuli. You will also study the regulation of genes in pathogenic bacteria.
Microbial Biotechnology

You'll cover the key groups of eukaryotic and prokaryotic microorganisms relevant to microbial biotechnology, principles of GM, and strain improvement in prokaryotes and eukaryotes. The impact of “omics”, systems biology, synthetic biology and effects of stress on industrial microorganisms are explored, alongside the activities of key microorganisms that we exploit for biotechnology.

Molecular Biology and the Dynamic Cell

This module offers a detailed study of the core molecular processes that enable cells to function such as DNA biochemistry, gene expression, protein synthesis and degradation. You will learn about the basic molecular processes that underpin the function of eukaryotic cells and to describe how different organelles within the cell function, with an emphasis on the dynamic nature of cell biology. You will have lectures, practical classes, a poster presentation and tutorials.

Computer Modelling in Science: Introduction
The aim of this module is to introduce the use of computing programming and modelling in the biological and environmental sciences for model simulation and image processing.
Structure, Function and Analysis of Genes

This module will provide you with a comprehensive understanding of the structures of DNA and RNA and how the information within these nucleic acids is maintained and expressed in both prokaryotic and eukaryotic cell types. Additionally, this module describes how nucleic acids can be manipulated in vitro using molecular biological approaches. Practical classes will focus your learning on the cloning and manipulation of DNA to express recombinant proteins in bacterial systems.

Structure, Function and Analysis of Proteins

This module considers the structure and function of soluble proteins and how individual proteins can be studied in molecular detail. More specifically you will learn about the problems associated with studying membrane-bound proteins and build an in-depth understanding of enzyme kinetics and catalysis. You will learn about the practical aspects of affinity purification, SDS PAGE, western blotting, enzyme assays, bioinformatics and molecular modelling approaches.

The above is a sample of the typical modules we offer but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. Modules may change or be updated over the duration of the course due to a number of reasons such as curriculum developments or staffing changes. Please refer to the module catalogue for the latest information on available modules.

Core modules

Microbiology Research Project

You will choose and plan a research project in consultation with a supervisor, based around ongoing research in the University. You'll carry out a literature review and produce an experimental outline. You will be required to design experiments, collect, analyse and interpret the data obtained. You'll spend at least three full days per week in this year undertaking your work. Examples of recent project areas include: antimicrobial resistance, synthetic biology, immune response to virus infections, rapid detection of Mycobacteria, phage therapy, immobilised microorganisms for fermentation and improve yeast performance for high gravity fermentations.

Optional modules

The Microbial Isolation and Identification Methods

You’ll gain an understanding of:

  • micro-organisms which are important in foods
  • factors which control the development of the microflora of food products
  • methods which can be used to isolate and identify bacteria from food products

You’ll study over the year in both lectures and practicals.

Pathogens
This module gives a detailed understanding of the genetics and biochemistry behind the properties of parasites and microorganisms that cause major human diseases in the present day. You will have a three-hour lecture once per week for this module.
Molecular Microbiology and Biotechnology

This module will enable you to comprehend the opportunities that protein engineering provides in applied microbiology and to appreciate some of the practical limitations associated with technology. You’ll gain a detailed understanding of prokaryotic protein expression and examples of its application to biotechnology. Practical classes and seminars will provide an insight into the necessary constraints and practicalities of experimental design and execution. The major coursework assignment introduces you to the rigour required for writing scientific papers.

Microbial Fermentation

This module commences with a review of microbial fermentation, including beer, cheese, yoghurt, meat and single-cell protein production, as well as sewage treatment. The underlying principles of microbial fermentation will be discussed, in addition to specific examples which will be examined in depth. From this basic knowledge the problems of microbial contamination and spoilage of the finished product will be analysed. You’ll spend four hours in lectures and have a four hour practical each week to study for this module.

Virology and Cellular Microbiology

The module will provide an in depth induction into the relationship of bacterial and viral pathogens and their hosts. Including understanding the underlying molecular basis of the adaptive response of bacteria to various environments and the mechanisms by which bacteria and viruses subvert cellular machinery. You’ll have a four hour weekly lecture to cover material for this module.

Rapid Methods in Microbiology

This module will enable you to understand where new methods can replace traditional techniques of microbial detection and recording. You’ll spend four hours in lectures and have a three hour practical each week to study for this module.

A particular emphasis will be placed on the problems of technology transfer into industry.

Practicals will compare methods for isolating and identifying microorganisms using both standard and newer methods and will evaluate the limitations of these procedures.

Molecular Microbiology and Infections

This module focuses on the molecular biology that drives the fundamental principles behind the survival of microorganisms and their interaction with humans.

Lectures will discuss the interaction between the host and pathogens and how they drive the mechanisms of infection and immunity.

There will be two hours of lectures a week.

Basic Introduction to Omic Technologies

Over the past few years major developments have been made regarding the study of genomes. Sequencing programmes now mean that the complete DNA sequence is now known for many species. Such information is revealing the high degree of similarity and conservation between different species and organisms, revolutionising the way in which gene function analysis is carried out. This module will provide a basic overview of recent research in the field of post-genomic technologies known as “omics” with emphasis on genomics, proteomics and metabolomics. Case studies will show how different approaches have been used to study genomes and how such developments are influencing the way genetic analysis and biotechnological improvement can be made. You will study by hands-on experience with problem-based lab and computer training sessions.

Plant Disease Control
Discusses applied aspects of plant disease control, comprising transmission, epidemiology, detection and diagnosis, and control options. You will cover control strategies based on application of fungicides, biological control, deployment of disease resistant varieties and biotechnological approaches. You will also consider the relative strengths and weaknesses of the different approaches. This module consists of a four-hour lecture once per week.
Plant Cell Signalling

How does a plant know when it is being attacked? In this module you’ll learn about plant signalling molecules and the ways in which these signals are integrated to ensure appropriate responses to environmental conditions or plant pathogen attack. You’ll gain a detailed knowledge of how plants use intercellular and intracellular signalling strategies to provide information about their environment, with particular emphasis on the use of molecular genetics in enabling us to determine the nature of the signals and the cross-talk that takes place between them. You’ll have lectures and demonstrations, as well as laboratory sessions to gain practical experience of the techniques for studying plant hormone signalling.

Environmental Biotechnology
This module provides training in environmental biotechnology, with particular emphasis on the interaction between microorganisms and the environment. The main topics covered will be wastewater treatment, bioremediation of organic and inorganic pollutants, microbes as indicators of risk factors in the environment, microbes in agriculture (biocontrol and biofertilisers) and the role of microorganisms in bioenergy production.
Ageing, Sex and DNA Repair
Examine the molecular causes of the ageing and malignant transformations of somatic cells that are observed during a single lifespan, and gain an understanding of the necessity to maintain the genome intact from one generation to the next. Around three hours per week will be spent within lectures studying this module.
The above is a sample of the typical modules we offer but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. Modules may change or be updated over the duration of the course due to a number of reasons such as curriculum developments or staffing changes. Please refer to the module catalogue for the latest information on available modules.

Fees and funding

UK students

£9250
Per year

International students

£25,000*
Per year
*For full details including fees for part-time students and reduced fees during your time studying abroad or on placement (where applicable), see our fees page.

If you are a student from the EU, EEA or Switzerland starting your course in the 2021/22 academic year, you will pay international tuition fees.

This does not apply to Irish students, who will be charged tuition fees at the same rate as UK students. UK nationals living in the EU, EEA and Switzerland will also continue to be eligible for ‘home’ fee status at UK universities until 31 December 2027.

For further guidance, check our Brexit information for future students.

Additional costs

As a student on this course, you should factor some additional costs into your budget, alongside your tuition fees and living expenses.

You should be able to access most of the books you’ll need through our libraries, though you may wish to purchase your own copies. If you do these would cost around £40.

Due to our commitment to sustainability, we don’t print lecture notes but these are available digitally. You will be given £5 worth of printer credits a year. You are welcome to buy more credits if you need them. It costs 4p to print one black and white page.

If you do a work placement, you need to consider the travel and living costs associated with this.

Personal laptops are not compulsory as we have computer labs that are open 24 hours a day but you may want to consider one if you wish to work at home.

Scholarships and bursaries

Home students*

Over one third of our UK students receive our means-tested core bursary, worth up to £1,000 a year. Full details can be found on our financial support pages.

* A 'home' student is one who meets certain UK residence criteria. These are the same criteria as apply to eligibility for home funding from Student Finance.

International/EU students

We offer a range of Undergraduate Excellence Awards for high-achieving international and EU scholars from countries around the world, who can put their Nottingham degree to great use in their careers. This includes our European Union Undergraduate Excellence Award for EU students and our UK International Undergraduate Excellence Award for international students based in the UK.

These scholarships cover a contribution towards tuition fees in the first year of your course. Candidates must apply for an undergraduate degree course and receive an offer before applying for scholarships. Check the links above for full scholarship details, application deadlines and how to apply.

Careers

This hands-on lab experience will give you skills to work in a laboratory when you graduate. You could work in healthcare and medical research, or the pharmaceutical or food industry.

You will be qualified to work with microbial pathogens, this means you can work in a laboratory immediately. You could work in industry or study for a PhD.

Microbiologists work in:

  • hospitals
  • pharmaceutical companies
  • biotechnology companies
  • regulatory and environmental agencies
  • the food industry

Recent destinations of graduates include:

  • research institutes and universities
  • pharmaceutical and food industries
  • healthcare and medicine research and development
  • agricultural and environmental disciplines
  • biotechnology research
  • advisory and management roles in government agencies such as Defra, the Food Standards Agency and the Health Protection Agency
  • scientific writing and communication

Average starting salary and career progression

89.5% of undergraduates from the School of Biosciences secured graduate level employment or further study within 15 months of graduation. The average annual salary for these graduates was £23,831.*

* HESA Graduate Outcomes 2020. The Graduate Outcomes % is derived using The Guardian University Guide methodology. The average annual salary is based on graduates working full-time within the UK.

Studying for a degree at the University of Nottingham will provide you with the type of skills and experiences that will prove invaluable in any career, whichever direction you decide to take.

Throughout your time with us, our Careers and Employability Service can work with you to improve your employability skills even further; assisting with job or course applications, searching for appropriate work experience placements and hosting events to bring you closer to a wide range of prospective employers.

Have a look at our careers page for an overview of all the employability support and opportunities that we provide to current students.

The University of Nottingham is consistently named as one of the most targeted universities by Britain’s leading graduate employers (Ranked in the top ten in The Graduate Market in 2013-2020, High Fliers Research).

Royal Society of Biology

This programme has been accredited by the Royal Society of Biology following an independent and rigorous assessment. Accredited degree programmes contain a solid academic foundation in biological knowledge and key skills, and prepare graduates to address the needs of employers.The accreditation criteria require evidence that graduates from accredited programmes meet defined sets of learning outcomes, including subject knowledge, technical ability and transferable skills.

Dummy placeholder image
" I chose to study Microbiology at the University of Nottingham due to the excellent reputation that the University has in both research and academia. Whilst attending the University I have had plenty of opportunities to get involved with research undertaken here. I spent 2 months of my summer working as part of a professional research group in the Centre for Biomolecular Sciences at the university. "

Related courses

The University has been awarded Gold for outstanding teaching and learning

Teaching Excellence Framework (TEF) 2017-18

Disclaimer

This online prospectus has been drafted in advance of the academic year to which it applies. Every effort has been made to ensure that the information is accurate at the time of publishing, but changes (for example to course content) are likely to occur given the interval between publishing and commencement of the course. It is therefore very important to check this website for any updates before you apply for the course where there has been an interval between you reading this website and applying.