Build up your knowledge of the subject through modules in the core elements of physics. The first two years will develop your key practical, mathematical and computational skills. You therefore do not have to make an early decision as to whether you wish to pursue a three-or four-year degree.
From Newton to Einstein
This module aims to provide students with a rigorous understanding of the core concepts of physics at an introductory level. The module underpins all other physics modules in all years.
Computing For Physical Science
You’ll receive training in basic computing techniques using Python, and will be introduced to their use in solving physical problems.
You’ll spend two hours in computer classes and a one hour lecture each week.
Introductory Experimental Physics
In this module you will receive: an introduction to the basic techniques and equipment used in experimental physics; training in the analysis and interpretation of experimental data; opportunities to observe phenomena discussed in theory modules and training in the skills of record keeping and writing scientific reports.
Mathematics for Physics and Astronomy
You’ll study a selection of mathematical techniques that are used for analysing physical behaviour. Topics will include:
- complex numbers
- calculus of a single variable
- plane geometry
- differential equations
- calculus of several variables
- matrix algebra
You’ll spend around three hours per week in workshops and lectures studying this module.
Quantitative Physics
This module will teach you how the basic principles of physics are applied in a range of situations and provide you with knowledge of the primary mathematical methods for the analysis of physical problems. On completion of the module, you will be able to formulate problems in physics using appropriate mathematical language.
Frontiers in Physics
This module introduces you to major areas of physics beyond those encountered in the core modules, including those at the forefront of modern research. Particular focus is placed on introductions to astronomy, biophysics and nanoscience. Other topics include condensed matter physics, atomic and particle physics and the physics of the environment.
The above is a sample of the typical modules we offer but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. Modules may change or be updated over the duration of the course due to a number of reasons such as curriculum developments or staffing changes. Please refer to the
module catalogue for the latest information on available modules.
You will study the same core modules as MSci Physics with Theoretical Physics. You won't do any laboratory work in this year or the next. This time is freed up to study more advanced modules in theoretical astrophysics, such as Theory Toolbox and Classical Fields.
Core modules
Principles of Dynamics
In this module you’ll be introduced to the mathematical language for discussing extreme problems. The formulations of mechanics due to Lagrange and Hamilton will be described and techniques for the solutions of the consequent equations of motion will be discussed. You’ll learn the underlying principles of dynamics and develop techniques for the solution of dynamical problems. You’ll have two hours per week of lectures studying this module.
The Quantum World
This module will provide an introduction to the theory and elementary applications of quantum mechanics, a theory that is one of the key achievements of 20th-century physics.
Quantum mechanics is an elegant theoretical construct that is both beautiful and mysterious. Some of the predictions of quantum mechanics are wholly counter-intuitive and there are aspects of it that are not properly understood but it has been tested experimentally for over 50 years and, wherever predictions can be made, they agree with experiment.
Wave Phenomena
Many physical systems support the propagation of waves, from the familiar waves on the surface of water to the electromagnetic waves that we perceive as light. The first half of the module will focus on optics: the study of light. Topics to be covered will include: geometrical optics; wave description of light; interference and diffraction; optical interferometry. The second half of the module will introduce more general methods for the discussion of wave propagation, and Fourier methods.
Thermal and Statistical Physics
Macroscopic systems exhibit behaviour that is quite different from that of their microscopic constituents studied in isolation. New physics emerges from the interplay of many interacting degrees of freedom. In this module you will learn about the important physical properties of matter and the two main approaches to their description. One, thermodynamics, treats macroscopically relevant degrees of freedom (temperature, pressure and so on) and find relations between these and the fundamental laws which govern them, independent of their microscopic structure. The other approach, statistical mechanics, links the macroscopically relevant properties to the microphysics by replacing the detailed microscopic dynamics with a statistical description. The common feature of both of these methods is the introduction of two macroscopic quantities, temperature and entropy, that have no microscopic meaning.
Classical Fields
In the module From Newton to Einstein, you learnt about the idea of a field a quantity which is defined at every point in space. In this module, the description of fields will be extended by introducing the mathematics of vector calculus.
The module will begin with an introduction to vector calculus, illustrated in the context of the flow of ideal (non-viscous) fluids.
The mathematics will then be used to provide a framework for describing, understanding and using the laws of electromagnetism. We discuss how electric and magnetic fields are related to each other and to electrical charges and electrical currents. The macroscopic description of electric fields inside dielectric materials and magnetic fields inside magnetizable materials will be described, including the boundary conditions that apply at material interfaces.
The last section of the module will discuss Maxwells equations of electrodynamics and how they lead to the vector wave equation for electromagnetic waves.
Theory Toolbox
Theory Toolbox will enhance your knowledge of the principles of theoretical physics and your understanding of the analytical methods for the analysis of physical problems.
The Structure of Stars
You will develop your knowledge of the various physical processes occurring in stars of different types. You’ll use this knowledge to build both mathematical models and your qualitative physical understanding of stellar structure and evolution will be enhanced. You’ll have two hours per week of lectures studying this module.
The Structure of Galaxies
This module will develop your current understanding of the various physical processes that dictate the formation, evolution and structure of galaxies. You’ll explore a number of topics including The Milky Way, The Dynamics of Galaxies, Active Galaxies and Galaxy Evolution among others. You’ll spend two hours per week in lectures studying this module.
The above is a sample of the typical modules we offer but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. Modules may change or be updated over the duration of the course due to a number of reasons such as curriculum developments or staffing changes. Please refer to the
module catalogue for the latest information on available modules.
You will complete the core elements of physics and theoretical astrophysics. Optional modules will give you the opportunity to study advanced physics modules that interest you.
You will apply the wide range of skills that you have learned to a theoretical astrophysics project.
Core modules
Introduction to Solid State Physics
This module will provide a general introduction to solid state physics. Topics covered include:
- Bonding nature of chemical bonds, thermodynamics of solid formation
- Crystal structures description of crystal structures, k-space, reciprocal lattice, Bragg diffraction, Brillouin zones
- Nearly-free electron model - Bloch's theorem, band gaps from electron Bragg scattering, effective masses
- Band theory Fermi surfaces, qualitative picture of transport, metals, insulators and semiconductors
- Semiconductors - doping, inhomogeneous semiconductors, basic description of pn junction
- Phonons normal modes of ionic lattice, quantization, Debye theory of heat capacities, acoustic and optical phonons
- Optical properties of solids absorption and reflection of light by metals, Brewster angle, dielectric constants, plasma oscillations
- Magnetism- Landau diamagnetism, paramagnetism, exchange interactions, Ferromagnetism, antiferromagnetism, neutron scattering, dipolar interactions and domain formation, magnetic technology
Atoms, Photons and Fundamental Particles
This module will introduce students to the physics of atoms, nuclei and the fundamental constituents of matter and their interactions. The module will also develop the quantum mechanical description of these.
Topics to be covered are:
- Approximation techniques first order perturbation theory, degeneracies, second order perturbation theory, transition rates, time-dependent perturbation theory, Fermi's golden rule
- Particle Physics protons and neutrons, antiparticles, particle accelerators and scattering experiments, conservation laws, neutrinos, leptons, baryons and hadrons, the quark model and the strong interaction, weak interactions, standard model
- Introduction to atomic physics review of simple model of hydrogen atom, Fermi statistics and Pauli principle, aufbau principle, hydrogenic atoms, exchange, fine structure and hyperfine interactions, dipole interaction, selection rules and transition rates
- Lasers optical polarization and photons, optical cavities, population inversions, Bose statistics and stimulated emission, Einstein A and B coefficients
- Nuclear Physics Radioactivity, decay processes, alpha, beta and gamma emission, detectors, stability curves and binding energies, nuclear fission, fusion, liquid drop and shell models.
Introduction to Cosmology
Cosmology is the scientific study of the universe as a whole. The module provides an introduction to modern cosmology, including some of the more recent observational and theoretical developments. No prior knowledge of General Relativity is required. Topics covered include: observed features of the universe, the Cosmological Principle, Newtoniaan and Relativistic cosmology, the Friedmann Models, cosmic expansion, the cosmological constant, evidence for the big bang model, the thermal history of the big bang, the early universe and inflation, the classical cosmological tests, structure formation (brief treatment only).
Extreme Astrophysics
To develop an understanding of high-energy phenomena in astrophysics and the relative importance of different processes in different situations.
To make models of extreme astrophysical sources and environments basedon physical theory.
To interpret observational data in the light of relevant physical theory.
Quantum Dynamics
You’ll extend and develop your knowledge of quantum theory with a particular emphasis on how quantum systems evolve over time. The module will focus on developing the mathematical formalism of quantum mechanics as well as introducing important physical models and calculational techniques.
Physics Project
You will carry out a project drawn from one of several areas of physics. The project may be experimental or theoretical in nature. Many of the projects reflect the research interests of members of academic staff. You will work in pairs and are expected to produce a plan of work and to identify realistic goals for your project. Each pair has a project supervisor responsible for setting the project.
Optional modules
Scientific Computing
This module aims to provide you with the skills necessary to use computational methods in the solution of non-trivial problems in physics and astronomy. You’ll also sharpen your programming skills through a three hour computing class and one hour of lectures per week.
Theoretical Elementary Particle Physics
To introduce the key theoretical ideas of elementary particle physics, such as symmetry and conservation laws, and to build the foundations for a mathematical description of particle properties and interactions.
Symmetry and Action Principles in Physics
Symmetry is a powerful notion, both in the development of theories of physical phenomena and in the solution of physical models. In this module, the basic aspects of the mathematical language of symmetry will be introduced and applied to a range of physical phenomena, and the principle of least action, introduced in The Principles of Dynamics module, will be further developed.
Nonlinear Dynamics and Chaos
In this module you will develop your knowledge of classical mechanics of simple linear behaviour to include the behaviour of complex nonlinear dynamics. You’ll learn about the way in which nonlinear deterministic systems can exhibit essentially random behaviour because of sensitivity relating to initial conditions. You’ll have two hours per week of lectures studying this module.
The above is a sample of the typical modules we offer but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. Modules may change or be updated over the duration of the course due to a number of reasons such as curriculum developments or staffing changes. Please refer to the
module catalogue for the latest information on available modules.
In the final year, you will work on a range of activities, projects and presentations. You will also carry out a major research project, working on a cutting-edge problem in theoretical astrophysics.
Core modules
Physics Research Project
In this year-long module you’ll aim to solve a theoretical or practical problem. You’ll spend semester one researching your chosen project and carry out your original research in semester two. You’ll have the opportunity to work with external parties such as an industrial laboratory, school or hospital if appropriate to your topic.
Gravity
This module provides an introduction to the modern theory of gravitation: Einstein's general theory of relativity. This module is based on a regular series of two one-hour lectures per week supplemented by a two-hour workshop once a fortnight.
Research Techniques in Astronomy
This module develops a range of modern astronomical techniques through student-centered approaches to topical research problems. You’ll cover a range of topics related to ongoing research in astronomy and astrophysics, and will encompass theoretical and observational approaches. This module is based on individual and group student-led activities involving the solution of topical problems including written reports and exercises, and a project.
Modern Cosmology
This module introduces you to the key ideas behind modern approaches to our understanding of the role of inflation in the early and late universe, in particular through the formation of structure, the generation of anisotropies in the cosmic microwave background radiation, and the origin of dark energy. You’ll study through a series of staff lectures and student-led workshops.
Optional modules
Imaging and Image Processing
This module aims to provide you with a working knowledge of the basic techniques of image processing. The major topics covered will include: acquisition of images, image representation, resolution and quantization, image compression and non-Fourier enhancement techniques, among others. You’ll spend around four hours in lectures, eight hours in seminars and have a one hour tutorial each week.
Order, Disorder and Fluctuations
This module will develop the modern theoretical description of phase transitions and critical phenomena and provide an introduction to the dynamics of non-equilibrium systems. Topics to be covered will include:
• ordered phases of matter;
• order parameters;
• scaling behaviour at critical points;
• mean-field approaches;
• finite-size scaling;
• stochastic processes;
• Langevin dynamics and the Fokker-Planck equation.
Applications, both within and beyond, condensed matter physics will be discussed.
Quantum Transport
The module will describe electronic transport phenomena in solid state systems. Topics to be covered will include:
• low-dimensional structures
• ballistic and diffusive transport
• quantum wires and dots
• carbon nanotubes and graphene
• coulomb blockade
• quantum Hall effects
• Anderson localization
• spin transport
• interference and decoherence
The above is a sample of the typical modules we offer but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. Modules may change or be updated over the duration of the course due to a number of reasons such as curriculum developments or staffing changes. Please refer to the
module catalogue for the latest information on available modules.