Mathematical Physics MSci


Fact file - 2018 entry

MSci Hons Mathematical Physics
UCAS code
4 years full-time
A level offer
Required subjects
Maths and physics
IB score
36 (6 in maths, plus 6 in physics and 6 in a third subject, all at Higher Level)
Course location
University Park Campus 
Course places
185 places for all courses in the School of Physics and Astronomy


This course provides a thorough education in theoretical physics and associated mathematical topics and involves a specially tailored combination of mathematics and physics modules. 
Read full overview

In years one and two, the foundations of the two subjects are laid down. In years three and four, you will be introduced to advanced topics close to current research areas with increasing emphasis on project work.

Year one 

In this year, you will gain a basic grounding in physics and mathematics, including mechanics special relativity, electromagnetism and quantum theory, mathematical modelling, calculus, linear mathematics and mathematical reasoning, along with an introduction to scientific computing.

Year two

In this year, you will learn the core elements of the classic theories of physics: electromagnetism, quantum mechanics, thermal and statistical mechanics, and optics. In parallel, you will learn the mathematical language in which these theories are expressed, such as vector calculus amd Fourier analysis. You will also take one or two optional modules.

Year three

You will take core modules in advanced quantum theory, relativity, solid- state physics and elementary particles and carry out a project in the general area of mathematical physics. You choose from a range of optional modules and will also be given training in communication skills in preparation for the more student-centred approaches taken in some of the fourth-year modules.

Year four

In this year, you will take a number of options which may include topics such as black holes, quantum field theory, cosmology and astrophysics (subject to sufficient student numbers), as well as carrying out a substantial project in mathematical physics.

More information 

See also the School of Mathematical Sciences and the Mathematical Physics website.

Entry requirements

A levels: A*AA-AAA, including maths, physics and one other academic subject at A level, or equivalent, excluding general studies, critical thinking and citizenship studies.

English language requirements 

IELTS 6.5 (no less than 6.0 in any element)

If you require additional support to take your language skills to the required level, you may be able to attend a presessional course at the Centre for English Language Education, which is accredited by the British Council for the teaching of English in the UK.

Students who successfully complete the presessional course to the required level can progress onto their chosen degree course without retaking IELTS or equivalent.

Alternative qualifications 

For details see the alternative qualifications page

Flexible admissions policy

In recognition of our applicants’ varied experience and educational pathways, the University of Nottingham employs a flexible admissions policy. We may make some applicants an offer lower than advertised, depending on their personal and educational circumstances. Please see the University’s admissions policies and procedures for more information.

Notes for applicants 

Scholarships - we offer a range of scholarships designed to assist you in settling in to your studies and meeting the financial requirements of your course. Some of these are means-tested but we also offer special scholarships that reward academic achievement.

One is offered on the basis of performance in the qualifying examinations for university entrance (eg A levels). A scholarship package is also offered to reward good performance in the qualifying (first) year examinations. This scheme includes special prizes that have been inaugurated in collaboration with our commercial partners. Full details of all scholarship prizes will be provided at the UCAS open days.

For more details about scholarships, please visit the School of Physics & Astronomy website.



The following is a sample of the typical modules that we offer as at the date of publication but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. Due to the passage of time between commencement of the course and subsequent years of the course, modules may change due to developments in the curriculum and the module information in this prospectus is provided for indicative purposes only.

Typical year one modules

Analytical and Computational Foundations

This year-long module will introduce you to three core concepts and techniques that underpin all maths modules in your degree. These are mathematical reasoning – the language of maths and providing concrete proof of your theories, an introduction to computing, and basic analysis methods.


On this year-long module you’ll bring together all A level work. In the first semester you’ll practice using the basic concepts and methods of calculus including limits, functions, continuity, Taylor series and Laplace transforms. In the second semester you’ll move onto more advanced usage of calculus. Topics will be based around the calculus of functions of several variables and include partial derivatives, chain rules, the vector operator grad, Lagrange multipliers and multiple integrals.

Linear Mathematics

This year-long module will introduce you to the methods and practices that you’ll need in subsequent modules on your course. Complex numbers, vector algebra and matrix algebra are established first. You’ll then expand your knowledge to include vector spaces, linear transformations and inner product spaces. This knowledge will equip you with the tools needed for the rest of your studies.

From Newton to Einstein

This year-long module aims to introduce core topics in physics which will underpin all subsequent physics modules. You’ll discuss classical mechanics in the language of vectors and the key notion of harmonic motion which is extended to cover wave phenomena. You’ll have an introduction to Einstein's special theory of relativity as well as the basic ideas of electromagnetism and electrical circuits and quantum physics. 

Quantitative Physics

This year-long module will train you in the mathematical modelling of physical processes. You’ll be trained in topics such as basic statistics and errors, dimensional analysis, curve sketching, orders of magnitude and estimates and integrating problems in physics among others. You’ll have an hour per week of lectures plus a number of 90-minute workshops throughout the year to assist in your learning.

Computing for Physical Science

In this year-long module you’ll learn computational techniques for solving physical problems. Topics will include variables and operators, vectors and arrays and plotting 2D and 3D graphs among others.


Typical year two modules

Introduction to Mathematical Physics

In this module, you will move from Newton’s classical descriptions of motion to the more powerful formulations due to Lagrange and Hamilton. This will allow Quantum mechanics to be developed in terms of the Schrodinger equation and mathematical notation of Hermitian operators.

Vector Calculus

The module introduces the vector differentiation operations of gradient, divergence and curl, develops integration methods of scalar and vector quantities over paths, surfaces and volumes, and relates these operations to each other via the integral theorems of Green, Stokes and Gauss. You’ll have two one-hour lectures each week as well as a problem workshop per fortnight.

Thermal and Statistical Physics

In this year-long module you’ll learn about the two main themes relating to the description of important physical properties of matter; thermodynamics and statistical mechanics. You’ll discover that they share common features through two hours of lectures weekly and four workshops throughout the year.

Optics and Electromagnetism

This year-long module begins with an introduction to optics, the study of light. You’ll cover a wide range of topics taking part in practical sessions to aid your learning. You’ll then cover topics relating to electromagnetism such as the treatment of dielectric and magnetic media among others.

Differential Equations and Fourier Analysis

In this module you’ll be introduced to Fourier series and integral transforms including methods of solving linear ordinary and partial differential equations. You’ll explore the wide-ranging use of the Fourier series and methods in applied mathematics. You’ll spend three hours per week in lectures and workshops, along with one problem-solving class fortnightly to aid your learning.


Typical year three modules

Advanced Quantum Theory

In this module you’ll apply the fundamental theory you learnt in year two to more advanced problems and new topics will be introduced. A number of topics relating to the general theory of relativity will also be explored.

Atoms, Photons and Fundamental Particles

In this year-long module you’ll be introduced to the physics of atoms, nuclei and the fundamental constituents of matter and their interactions. You’ll gain knowledge about the quantum mechanical description of their interactions. Every week, you’ll have two hours of lectures; you'll also have five 90-minute workshops throughout the year to aid your understanding.

Introduction to Solid State Physics

In this year-long module you’ll be introduced to solid-state physics. You’ll explore the topics of bonding, crystal structures, band theory, semi-conductors, phonons and magnetism among others. You’ll apply theoretical ideas to the quantitative analysis of physical situations. You’ll have two hours per week of lectures, plus five 90-minute workshops throughout the year.

Physics Project

In this module you’ll carry out a project drawn from one of several areas of physics, the project will be theoretical or computational in nature. You’ll work in pairs and have regular meetings with a staff supervisor to advise on the project and monitor your progress. 


In this module you’ll have an introduction to Einstein’s theory of general and special relativity. The relativistic laws of mechanics will be described within a unified framework of space and time. You’ll learn how to compare other theories against this work and you’ll be able to explain new phenomena which occur in relativity. You’ll have four hours of lectures per week studying this module.


Typical year four modules

Mathematical Physics Project

In this year-long module you’ll aim to solve a theoretical problem by working in pairs. You’ll have supervision from a theoretician from either physics and astronomy or mathematical sciences. By the end of the module you and your partner will produce a 45-minute lecture on your project. You’ll have a seminar at the start of the module and then weekly tutorials throughout to assist the progress of the project.


Typical optional modules

Below is a small sample of modules you will be able to choose from:

Black holes

In this module you’ll systematically study black holes and their properties, including astrophysical processes, horizons and singularities. You’ll have an introduction to black hole radiation to give you an insight into problems of research interest. You’ll gain knowledge to help you begin research into general relativity. You’ll have four hours of lectures per week studying this module.

Differential Geometry

In this module you’ll be equipped with the tools and knowledge to extend your understanding of general relativity. You’ll explore more abstract and powerful concepts using examples of curved space-times such as Lie groups and manifolds among others. You’ll have three hours of lecture per week studying this module, which may be used as example or problem classes when required.

Introduction to Quantum Information Science

This module gives an introduction to quantum information science, emphasising the differences and similarities between classical and quantum theories. Influential results in the field such as entanglement and quantum teleportation, Bell's theorem and the quantum no-cloning theorem are discussed. The second part covers at least two topics from quantum Markovian evolutions, quantum statistics and continuous variable systems.

Advanced Gravity

In this module you’ll develop your understanding of the ideas of general relativity to an advanced level. You’ll use scientific models applied to current research, including modified gravity models with extra dimensions, to assist your learning. You’ll have three hours of lectures for seven weeks of the semester while studying this module.

Theoretical Elementary Particle Physics

In this module you’ll have an introduction to theoretical aspects of the standard model of particle physics. You’ll learn about ideas such a symmetry and conservation laws through a number of different topics including relativistic notation, relativistic particles, Feynman diagrams and discrete symmetries among others. You’ll have two hours per week of lectures studying this module.

Quantum Field Theory

In this year-long module you’ll be introduced to the study of the quantum dynamics of relativistic particles. You’ll learn about the quantum description of electrons, photons and other elementary particles leading to an understanding of the standard model of particle physics. You’ll have two hours per week of lectures studying this module.

Quantum Coherent Phenomena

This module will introduce you to a range of physical phenomena which exhibit macroscopic quantum coherence including Bose condensation in cold atomic gases, superfluidity in Helium-4 and superconductivity in metals and alloys. You’ll discuss their common features and general theoretical ideas as well as some of their applications. You’ll have two hours per week of lectures studying this module.



You will have a thorough grounding in the fundamental principles of physics and mathematics, and experience of the application of mathematical techniques to theoretical physics. A combination of intellectual rigour, numeracy and problem solving will prepare you for employment in areas ranging from research and development in industry to the financial sector.

Professional accreditation

The Institute of Physics accredits bachelor and integrated masters degree programmes for the purposes of the professional award of Chartered Physicist. Chartered Physicist requires an IOP accredited degree followed by an appropriate period of experience during which professional skills are acquired. 

An accredited integrated masters degree fulfils the academic requirements for Chartered Physicist.

institute of physics

Average starting salary and career progression

In 2015, 93% of first-degree graduates from the School of Physics and Astronomy who were available for employment had secured work or further study within six months of graduation. The average starting salary was £25,389 with the highest being £40,000.* 

* Known destinations of full-time home and EU first-degree graduates, 2014/15. Salaries are calculated based on those in full-time paid employment within the UK.

Careers support and advice

Studying for a degree at the University of Nottingham will provide you with the type of skills and experiences that will prove invaluable in any career, whichever direction you decide to take. Throughout your time with us, our Careers and Employability Service can work with you to improve your employability skills even further; assisting with job or course applications, searching for appropriate work experience placements and hosting events to bring you closer to a wide range of prospective employers.

Have a look at our careers page for an overview of all the employability support and opportunities that we provide to current students.  


Fees and funding

Scholarships and bursaries

The University of Nottingham offers a wide range of bursaries and scholarships. These funds can provide you with an additional source of non-repayable financial help. For up to date information regarding tuition fees, visit our fees and finance pages.

Home students*

Over one third of our UK students receive our means-tested core bursary, worth up to £2,000 a year. Full details can be found on our financial support pages.

* A 'home' student is one who meets certain UK residence criteria. These are the same criteria as apply to eligibility for home funding from Student Finance.

International/EU students

Our International Baccalaureate Diploma Excellence Scholarship is available for select students paying overseas fees who achieve 38 points or above in the International Baccalaureate Diploma. We also offer a range of High Achiever Prizes for students from selected countries, schools and colleges to help with the cost of tuition fees. Find out more about scholarships, fees and finance for international students.


Key Information Sets (KIS)

KIS is an initiative that the government has introduced to allow you to compare different courses and universities.


How to use the data

This online prospectus has been drafted in advance of the academic year to which it applies. Every effort has been made to ensure that the information is accurate at the time of publishing, but changes (for example to course content) are likely to occur given the interval between publishing and commencement of the course. It is therefore very important to check this website for any updates before you apply for the course where there has been an interval between you reading this website and applying.


studying at the site where MRI was developed
+44 (0)115 951 5559 Make an enquiry


Admissions Tutor: Dr Janette Dunn  
Admissions Secretary: Mrs Julie Kenney  

Student Recruitment Enquiries Centre

The University of Nottingham
King's Meadow Campus
Lenton Lane
Nottingham, NG7 2NR

t: +44 (0) 115 951 5559
w: Frequently asked questions
Make an enquiry