Chemistry BSc


Fact file - 2017 entry

UCAS code:F100
Qualification:BSc Hons
Type and duration:3 year UG
Qualification name:Chemistry
UCAS code
UCAS code
Chemistry | BSc Hons
3 years full-time
A level offer
Required subjects
chemistry at A level grade A; GCSE mathematics grade C
IB score
34-32 (including chemistry grade 6 at Higher Level)
Course location
University Park Campus 
Course places
180 across all chemistry courses (except FF31 and FFH1)


This course provides an in-depth study of all of the major branches of chemistry, and a comprehensive grounding in modern, practical synthetic and analytical chemistry.
Read full overview

The MSci and BSc degrees provide an in-depth study of all of the major branches of chemistry, and a comprehensive grounding in modern, practical synthetic and analytical chemistry. Study within these core areas is enhanced by a wide range of special topics, many of which draw from the exciting research of staff within the School.

Transfer between the MSci Chemistry, BSc Chemistry, MSci Chemistry with an International Study Year or MSci Chemistry with a Year in Industry courses is possible up to the end of semester one in year two.

Year one 

You will spend approximately two-thirds of your first year gaining chemical knowledge and understanding that builds upon your pre-university studies. Optional modules, which account for the remainder of your study time, may be selected from a wide range offered in the University module catalogue. These could include modules in the physical and biological sciences, the humanities, languages and/or business. Students who do not possess A2 level maths and/or A2 level physics (or equivalent) will take in-house modules to prepare them for these aspects of the chemistry course.

Year two

In the second year, theoretical and practical modules build on the knowledge and understanding gained in the first year. The core material accounts for approximately 90 per cent of your study time, the remainder of which can be covered by optional modules.

Transfer between the BSc Chemistry and MSci Chemistry, MSci Chemistry with an International Study Year and MSci Chemistry with a Year in Industry is usually possible at any stage up to the end of semester one in year two.

Year three 

The final year of the BSc course provides a balanced treatment of the three branches of chemistry, as well as allowing you the time to study a wide range of optional modules. You will gain experience of advanced experimental techniques in your laboratory classes, and you will take modules that develop your communication and professional skills.


Entry requirements

A levels: AAB-ABB, including grade A chemistry A level. Typical offers will vary depending on the A level subjects offered in addition to chemistry.

GCSEs: mathematics grade C (or equivalent)

English language requirements 

IELTS 6.0 (no less than 5.5 in any element)

Students who require extra support to meet the English language requirements for their academic course can attend a presessional course at the Centre for English Language Education (CELE) to prepare for their future studies. Students who pass at the required level can progress directly to their academic programme without needing to retake IELTS. Please visit the CELE webpages for more information.

Alternative qualifications 

For details see alternative qualifications page

Flexible admissions policy

We consider applicants’ circumstances and broader achievements as part of the assessment process, but do not vary the offer from the grades advertised as a result of these.

We value diversity and are committed to equal opportunity.



Typical Year One Modules


An Introduction to Structure, Periodicity and Coordination Chemistry

This module builds on your previous studies in chemistry and provides a firm foundation in topics including: atomic and molecular structure; the shapes of molecules ; chemical bonding; Lewis structures;  molecular shape and symmetry; Intermolecular interactions and periodic trends in the properties of the elements of the s- and p-blocks;  the chemistry of the transition metal elements and their coordination complexes. You’ll spend around two hours per week studying this module with weekly tutorials. 

An Introduction to Spectroscopy, Energy and Bonding in Chemistry

In this module you will learn about the development of quantum theory and the spectroscopy of the hydrogen atom. You will examine the theories used to describe the bonding in molecules and will develop an understanding of microwave and infra-red spectroscopies. The module also introduces you to some of the key concepts in thermodynamics including enthalpy, entropy and free energy and their application in describing equilibria and electrochemical processes. You will develop an understanding of the key concepts in reaction kinetics. You’ll spend two hours per week studying this module.

An Introduction to Organic Molecules and their Reactivity
You’ll examine the fundamental principles of organic chemistry. This will include nomenclature, bonding concepts, orbitals and the shape, stereochemistry and acid-base properties of organic molecules.
Later the module will focus on reactivity and important reactions and transformations in organic chemistry. You’ll spend two hours per week studying this module. 
Foundation Laboratory Work

This module introduces you to the essential laboratory skills that are required in inorganic, organic and physical chemistry. You’ll spend around eight hours per week in laboratory practicals performing experiments, and collecting and analysing data. You’ll present written reports of your experimental work that will form part of the assessment for this module.

Chemistry Study Skills
You’ll follow this introductory module right at the start of your course. It is designed to develop your study skills so that you can work effectively at University. The module will also introduce you to first year undergraduate laboratory chemistry. You’ll spend around four hours in your first week in practical sessions studying this module.


Chemical Calculations 1

You’ll gain a firm understanding of the use of mathematical equations in a chemical context through the study of topics including: scientific notation and significant figures; common chemical units and conversions between them; rearrangement of chemical expressions and their graphical representation. You’ll spend three hours per week in lectures and workshops for this module. Please note, if you do not possess a grade A-C in A level mathematics (or equivalent) then this module is compulsory. 

Chemical Calculations 2

This module extends the material covered in Chemical Calculations 1. You’ll study topics including trigonometry, differentiation and integration, and differential equations for chemical problems. You’ll spend three hours per week in lectures and workshops studying these topics. Please note, if you do not possess a grade A-C in A level mathematics (or equivalent) then this module is compulsory. 

Molecules that Changed the World

You’ll be introduced to selected molecules that have had a significant impact on humankind, including medicines, drugs, poisons and materials. You’ll examine these in their historical context, placing importance on how and why these molecules made such an impact on society. You’ll discuss how unique chemical names came about, the people and cultures involved, as well as the key discoveries and events that lead to these significant molecules. 

Introduction to Green Chemistry and Processing
In this module you’ll look at green chemistry in its broadest sense, covering the fundamental concepts and chemistry involved in making chemical processes cleaner and more environmentally benign. You’ll spend one hour per week in lectures, seminars and workshops over the whole year studying this module. 
Frontiers in Chemistry
This module will introduce you to selected topics at the forefront of current research in Chemistry from a Physical Chemistry perspective. Example topics include: nanochemistry and its applications; energy generation and storage technologies; chemistry in the digital age; the chemistry of ions; and the application of advanced photon sources. (Typically two lectures per week)
Mathematics for Chemistry 1

You’ll be introduced to topics such as: functions of single variables; differential calculus of a single variable; integral calculus of a single variable; and basic probability and statistics. You’ll spend three hours per week in workshops and lectures for this module. 

Mathematics for Chemistry 2

You’ll build upon your knowledge from Mathematics for Chemistry 1 and spend around three hours per week lectures and workshops. Topics you’ll study include: complex numbers; differential calculus; and the algebra of matrices and their applications in chemistry. 


Typical Year Two Modules


Core Laboratory Work

This module builds on the practical, analytical and communication skills developed in the first year and introduces experiments across the range of chemistry, based on your second year theory modules. You’ll spend around 10 hours per week in practicals for this module. 

Equilibria, Rates and Interfaces

You’ll build upon the principles of thermodynamics and kinetics developed in your first year, applying this to gaseous and liquid bulk phases, liquid to gas and solid to gas interfaces, and electrochemical cells. You’ll spend around two hours per week in lectures and workshops studying this module. 

General Inorganic Chemistry

You’ll spend two hours per week in lectures studying topics including the synthesis, bonding and reactivity of organometallic compounds, the use of symmetry and group theory to interpret infra-red spectra and NMR spectroscopy in inorganic chemistry. Further support is provided by tutorials every third week.

Quantum Chemistry and Spectroscopy

You’ll study topics including: particles and waves; vibrating molecules; orbitals; electron spin and spin-orbit coupling; Einstein coefficients; and centrifugal distortion. You’ll spend around two hours per week in lectures and one hour in workshops that run every three weeks for this module. 

Synthesis & Spectroscopy

In this module you’ll discuss the reactivity of, suggest synthetic routes for and interpret the spectroscopic characterisation of organic compounds including some natural products. Topics studied include modern spectroscopic techniques, carbon-carbon bond forming reactions, and the influence of heteroatoms on reactivity. You’ll attend two hours of lectures each week in this module and tutorials every third week.



Atmospheric Chemistry
You’ll study topics such as the physical properties of the atmosphere, chemistry of ozone in the stratosphere, global warming, and analytical methods in atmospheric chemistry in three hours of lectures each week.
Principles of Analytical Chemistry
You’ll be introduced to the principles of analytical chemistry, including the principal types of instrumentation used and the statistical treatment of analytical results. You’ll spend around two hours per week in lectures and workshops studying this module. 
Introduction to Medicinal Chemistry, Molecular Biology and Microbiology

This module introduces students to the chemistry of the fundamental building blocks of life; the structures of, and replication processes in prokaryotes; and how these can be disrupted by anti-infectives and harnessed in protein engineering. Fundamental concepts in medicinal chemistry and drug discovery are presented including the mode of action of a number of anti-cancer agents and the basic requirements for drug delivery, metabolism and targeting. . You’ll spend two hours each week in lectures for this module. 

Advanced Calculus and Differential Equation Techniques

You will be introduced to the differential calculus of functions and vector operators. Spending three hours per week in lectures and workshops, you’ll consider the development of techniques for the solution of boundary and initial value problems for ordinary differential equations. 

Typical Year Three Modules


Advanced Laboratory Techniques

You’ll be taught advanced experimental techniques in organic, inorganic and physical chemistry, providing you with experience in experiment design and the recording, analysis and reporting of data. You’ll achieve this through a focused mini-project culminating in individual oral and written presentations and a lab report. You’ll spend around 10 hours a week in practical sessions.

Bioinorganic and Metal Coordination Chemistry
You’ll study the roles of the transition metal elements in biology including iron in haemoglobin and myoglobin, metal centres in enzymes and the use of metal complexes in medicine. You learn about the physical methods used to study the electronic structure of transition metal centres and the synthesis and the application of coordination chemistry in metal extraction, photochemistry and catalysis. You’ll spend around two hours per week in lectures, tutorials and workshops studying this module.
This module will develop your knowledge and understanding of heterogeneous and homogeneous catalysis, catalyst promotion and the concept of catalytic cycles. You’ll spend around two hours per week in lectures and seminars for this module. 
Chemical Bonding and Reactivity
You’ll learn about the fundamental requirements for two molecules to react and how to assess the likelihood of reactivity based on energy level structure.  You’ll learn about experiments that can probe the outcomes of reaction and experiments that can promote reaction.  You’ll learn about some theoretical methods that can be used to understand reactivity.  The module will progress at two lectures per week, with four workshops interspersed throughout the semester and regular problem sheets.    
Organometallic and Asymmetric Synthesis
You'll learn about a range of modern reagents and synthetic methodology, and how these are applied to the synthesis of organic target molecules, such as natural products and active pharmaceuticals. You'll learn how the use of protecting groups and directing groups can be used to enable complex molecule synthesis by controlling chemoselectivity, stereoselectivity and regioselectivity, and how modern palladium-mediated cross-coupling reactions can be used to synthesise complex organic molecules.
Pericyclic Chemistry and Reactive Intermediates

In this module you will use of frontier molecular orbital analysis to explain and predict stereochemical and regiochemical outcomes of pericyclic reactions You will also learn about the generation and use of reactive intermediates in synthesis such as radicals, carbenes and nitrenes. You will spend two hours in lectures per week in this module and will attend tutorials every three weeks.

Solids, Interfaces and Surfaces
You’ll study the relationships between structure and properties of solids, and develop electronic structure theories that account for a wide range of properties of solids. You’ll learn about semi-conductors, photoconductivity, LEDs and solar cells and attend around two lectures per week in this module.


Contemporary Drug Discovery
This module explores modern approaches to drug discovery and will involve discussions on how chemical structure influences the molecular properties, biological activity, and toxicity of drugs. Many examples from case histories of successful medicines will be used to illustrate the underlying chemical principles.
Communicating Chemistry
In this module, you’ll spend around 8 hours per week on placement in a school, teaching in a classroom. You will attend training sessions and you’ll keep a journal, provide a lesson pack and give a presentation on your experiences being a classroom assistant. These will form the basis for assessment in this module.
Chemical Biology and Enzymes

In this module you’ll develop an understanding of the basic principles of protein expression, mutagenesis and purification. Areas you’ll consider include: yeast two and three hybrid technology; microarrays; protein NMR; and protein X-ray crystallography. You’ll spend around two hours per week studying for this module

Topics in Inorganic Chemistry
You’ll study aspects of solid state materials chemistry and f-Block chemistry including their synthesis, technological uses and applications, electronic structure, spectroscopy and optical properties, magnetism and roles in catalysis.
Molecular Modelling

This module will introduce you to molecular modelling with a focus on applications in the pharmaceutical chemistry. You will study the computer simulation of the properties of molecules and learn about molecular modelling techniques in drug discovery.

Drug discovery: the development of new medicines

You’ll explore the vital role of chemistry in drug discovery, involving discussions of the way chemical structure influences the molecular properties, biological activity, and toxicity of drugs. Many examples from case histories of successful medicines will be used to illustrate the underlying chemical principles. This module is taught through nine interactive workshops presented by experienced medicinal chemists from GlaxoSmithKline and staff in the School of Chemistry.

Protein Folding and Biospectroscopy

You’ll develop an understanding of protein structure and the methods for structural analysis. A range of experimental techniques will be introduced to examine stability and to probe the nature of the active site in a range of proteins. You’ll spend around two hours per week in lectures and workshops studying this module.




The modules we offer are inspired by the research interests of our staff and as a result may change for reasons of, for example, research developments or legislation changes. This list is an example of typical modules we offer, not a definitive list.



You will gain exceptional training in modern conceptual and practical chemistry, and you will develop your critical thinking, problem-solving and time-management skills. If you opt for the MSci Chemistry degree, part of your final year will involve you joining a research group in the School to work on a project at the cutting edge of research in chemistry.

You will develop into a self-motivated and independent researcher; attributes that are essential for a research career in the chemical and pharmaceutical industries or for postgraduate research in the chemical sciences. Our graduates are also employed in professions outside the chemical industry including those in finance, education, marketing and the media.

Average starting salary and career progression

In 2014, 87% of first-degreegraduates in the school who were available for employment had securedwork or further study within six monthsof graduation. The average startingsalary was £21,757 with the highestbeing £31,200.

* Known destinations of full-time home and EU first-degree graduates, 2013/14.

Careers Support and Advice

Studying for a degree at The University of Nottingham will provide you with the type of skills and experiences that will prove invaluable in any career, whichever direction you decide to take. Throughout your time with us, our Careers and Employability Service can work with you to improve your employability skills even further; assisting with job or course applications, searching for appropriate work experience placements and hosting events to bring you closer to a wide range of prospective employers.

Have a look at our Careers page for an overview of all the employability support and opportunities that we provide to current students.  


Fees and funding

Scholarships and bursaries

The University of Nottingham offers a wide range of bursaries and scholarships. These funds can provide you with an additional source of non-repayable financial help.

Home students*

There are several types of bursary and scholarship on offer. Download our funding guide or visit our financial support pages to find out more about tuition fees, loans, budgeting and sources of funding.

To be eligible to apply for most of these funds you must be liable for the £9,000 tuition fee and not be in receipt of a bursary from outside the University.

* A 'home' student is one who meets certain UK residence criteria. These are the same criteria as apply to eligibility for home funding from Student Finance.

International/EU students

The University of Nottingham provides information and advice on financing your degree and managing your finances as an international student. The International Office offers a range of High Achiever Prizes for students from selected schools and colleges to help with the cost of tuition fees.  

Key Information Sets (KIS)

Key Information Sets (KIS)

KIS is an initiative that the government has introduced to allow you to compare different courses and universities.


There is assessment associated with this programme that is not attached to a specific module. Students attend a non-credit bearing chemistry study skills module at the start of their course which is designed to bridge the transition between year 13 and undergraduate chemistry. The classes refresh key skills and ideas, and help to build confidence in areas such as laboratory work and assessment.

How to use the data


if you found the cure
It's #MeantToBe
Get in touch: 
+44 (0)115 951 3529
Find us on FacebookFollow us

This online prospectus has been drafted in advance of the academic year to which it applies. Every effort has been made to ensure that the information is accurate at the time of publishing, but changes (for example to course content) are likely to occur given the interval between publishing and commencement of the course. It is therefore very important to check this website for any updates before you apply for the course where there has been an interval between you reading this website and applying.


Dr J McMaster  








Student Recruitment Enquiries Centre

The University of Nottingham
King's Meadow Campus
Lenton Lane
Nottingham, NG7 2NR

t: +44 (0) 115 951 5559
Make an enquiry