## Fact file - 2017 entry

## Overview

The MSci programme builds on the core of physics in the BSc course, leading you to the highest levels of the subject. As such, it is designed for those interested in careers as professional physicists and other high-flying careers.

A unique feature of this course is the fourth year where traditional lectures are replaced by student-led activities including a strong synoptic element, and the opportunity to work as a physics consultant in an industrial or academic setting. In addition to providing the strongest physics background, this approach equips graduates with a wide variety of transferable skills that are highly respected by top employers.

### Year one

The first two years of this degree develop the key skills in physics that also form the first two years of the BSc (F300) programme. You therefore do not have to make a premature decision as to whether you wish to pursue a three- or four-year degree.

### Years two and three

In addition to pursuing advanced subjects in physics, you will take modules in mathematical applications and communication skills that prepare you for the unique teaching environment of the final year. There is also the opportunity to pursue any of a wide range of options in physics, related areas, or subjects right across the University.

### Year four

The final year is taught in a completely different way. You do not take any examinations. Instead, you will undertake a range of activities (mini projects, presentations and similar), which are synoptic in nature, interweaving the subjects that you learned in previous years to develop a broad understanding of physics. You will also carry out a major research project, either involving consultancy work in industry or collaboration within one of the research groups.

## Entry requirements

**A levels:** A*AA-AAA including physics and maths at A level

### English language requirements

IELTS 6.5 (no less than 6.0 in any element)

Students who require extra support to meet the English language requirements for their academic course can attend a presessional course at the Centre for English Language Education (CELE) to prepare for their future studies. Students who pass at the required level can progress directly to their academic programme without needing to retake IELTS. Please visit the CELE webpages for more information.

### Alternative qualifications

For details see the alternative qualifications page

### Flexible admissions policy

We may make some applicants an offer lower than advertised, depending on their personal and educational circumstances.

### Notes for applicants

**Scholarships** - we offer a range of scholarships designed to assist you in settling in to your studies and meeting the financial requirements of your course. Some of these are means-tested but we also offer special scholarships that reward academic achievement.

One is offered on the basis of performance in the qualifying examinations for university entrance (eg A levels). A scholarship package is also offered to reward good performance in the qualifying (first-) year examinations. This scheme includes special prizes that have been inaugurated in collaboration with our commercial partners. Full details of all scholarship prizes will be provided at the UCAS open days.

For more details about scholarships, please see www.nottingham.ac.uk/physics

## Modules

**Typical Year One Modules**

This year-long module aims to introduce core topics in physics which will underpin all subsequent physics modules. You’ll discuss classical mechanics in the language of vectors and the key notion of harmonic motion which is extended to cover wave phenomena. You’ll have an introduction to Einstein's special theory of relativity as well as the basic ideas of electromagnetism and electrical circuits and quantum physics. There will be four hours of lectures and a one hour tutorial weekly, plus a couple of two-hour workshops throughout the year.

You will study a selection of mathematical techniques that are useful for analysing physical behaviour. The module topics are: complex numbers, calculus of a single variable, plane geometry and conic sections, ordinary differential equations, calculus of several variables and matrices and matrix algebra.

In this year-long module you’ll learn the techniques for solving physical problems using MatLab. Topics will include variables and operators, vectors and arrays and plotting 2D and 3D graphs among others.

This year-long module will train you in the mathematical modelling of physical processes. You’ll be trained in topics such as basic statistics and errors, dimensional analysis, curve sketching, orders of magnitude and estimates and integrating problems in physics among others. You’ll have an hour per week of lectures plus a number of 90 minute workshops throughout the year to assist in your learning.

In this module you will receive: an introduction to the basic techniques and equipment used in experimental physics; training in the analysis and interpretation of experimental data; opportunities to observe phenomena discussed in theory modules and training in the skills of record keeping and writing scientific reports.

This module introduces you to major areas of physics beyond those encountered in the core modules, including those at the forefront of modern research. Particular focus is placed on introductions to astronomy, biophysics and nanoscience. Other topics include condensed matter physics, atomic and particle physics and the physics of the environment.

Typical Year Two Modules

Typical Year Two Modules

This module will provide an introduction to the theory and applications of quantum mechanics, a theory that is one of the key achievements of 20th century physics. This module will begin with a discussion of simple systems and develop the mathematical formulation of quantum mechanics. The module will then extend the formalism to cope with the movement of particles and make links to the material that you have seen in the 'From Newton to Einstein' module.

In this year-long module you’ll learn about the two main themes relating to the description of important physical properties of matter; thermodynamics and statistical mechanics. You’ll discover that they share common features through two hours of lectures weekly and four practical workshops throughout the year.

In this module, you are introduced to the concepts of scalar and vector fields and introduced to the mathematics of vector calculus that can be used to describe these fields. The mathematics will then be used to provide a framework for describing, understanding and using the laws of electromagnetism.

Many physical systems support the propagation of waves, from the familiar waves on the surface of water to the electromagnetic waves that we perceive as light. The first half of the module will focus on optics: the study of light. Topics to be covered will include: geometrical optics; wave description of light; interference and diffraction; optical interferometry. The second half of the module will introduce more general methods for the discussion of wave propagation, and Fourier methods.

In this module you will develop your experimental technique and gain experience of some key instruments and methods. The experiments will cover electrical measurements, optics and radiation. You will also learn how to use a computer to control experiments and to record data directly from measuring instruments.

Typical Year Three Modules

Typical Year Three Modules

In this year-long module you’ll be introduced to the physics of atoms, nuclei and the fundamental constituents of matter and their interactions. You’ll gain knowledge about the quantum mechanical description of their interactions. Every week, you’ll have two hours of lectures; you'll also have with five 90 minute workshops throughout the year to aide your understanding.

In this year-long module you’ll be introduced to solid state physics. You’ll explore the topics of bonding, crystal structures, band theory, semi-conductors, phonons and magnetism among others. You’ll apply theoretical ideas to the quantitative analysis of physical situations. You’ll have two hours per week of lectures plus five 90 minute workshops throughout the year.

You will carry out a project drawn from one of several areas of physics. The project may be experimental, theoretical or computational in nature. Many of the projects reflect the research interests of members of academic staff. You’ll work in pairs and will be expected to produce a plan of work and to identify realistic goals for your project. Each pair has a project supervisor responsible for setting the project.

Typical Year Four Modules

Typical Year Four Modules

This module aims to provide you with a working knowledge of the basic techniques of image processing. The major topics covered will include: acquisition of images, image representation, resolution and quantization, image compression and non-Fourier enhancement techniques, among others. You’ll spend around four hours in lectures, 8 hours in seminars and have a one hour tutorial each week.

This module introduces you to the key ideas behind modern approaches to our understanding of the role of inflation in the early and late universe, in particular through the formation of structure, the generation of anisotropies in the cosmic microwave background radiation, and the origin of dark energy. You’ll study through a series of staff lectures and student-led workshops.

In this year-long module you’ll aim to solve a theoretical or practical problem. You’ll spend semester one researching your chosen project and carry out your original research in semester two. You’ll have the opportunity to work with external parties such as an industrial laboratory, school or hospital if appropriate to your topic.

Typical Optional Modules

Typical Optional Modules

Radiation is a term which can cover many different phenomena and in the public eye radiation can often be seen as a danger. In this module you will learn how physicists can harness the health benefits of using radiation, as well as measuring and controlling levels of radiation in the environment. You’ll examine the biological effects of radiation and the principles which govern safe exposure limits. Around two hours per week will be spent in lectures, supplemented by student-led workshop sessions.

This module will provide an introduction to how forces at the nanoscale are radically different to those observed in macroscopic systems and how they can be exploited in nanometre-scale processes and devices. You’ll spend two hours per week in lectures and have two workshops during the semester.

This module will develop your current understanding of the various physical processes that dictate the formation, evolution and structure of galaxies. You’ll explore a number of topics including The Milky Way, The Dynamics of Galaxies, Active Galaxies and Galaxy Evolution among others. You’ll spend two hours per week in lectures studying this module.

Symmetry is a powerful notion, both in the development of theories of physical phenomena and in the solution of physical models. In this module the basic aspects of the mathematical language of symmetry will be introduced and applied to a range of physical phenomena, as well as the principle of least action, introduced in The Principles of Dynamics module, will be further developed.

In this module you’ll be introduced to modern cosmology – the scientific study of the Universe as a whole. Topics will cover recent observations and theoretical developments including Friedmann models, the thermal history of the Big Bang and classical cosmological tests among others. You’ll have two hours per week of lectures, along with a couple of two-hour workshops to assist your learning whilst studying this module.

In this module you’ll explore the physical processes involved in extreme and explosive high-energy events known in astronomy and the relative importance of different processes in different situations. You’ll make models of extreme astrophysical sources and environments based on physical theory. You’ll also learn to interpret observational data according to relevant physical theory. You’ll have two hours of lectures per week studying this module.

This module introduces you to the physical properties of semiconductors and low-dimensional systems, such as quantum wells, wires and dots. The aim is to explain the physics that underlies optical and transport properties of these structures and their applications in advanced technologies. This course is structured in two main parts; the foundation of quantum mechanics and solid state physics needed to describe a low dimensional system. You’ll spend two hours per week in lectures.

In this module you’ll have an introduction to theoretical aspects of the standard model of particle physics. You’ll learn about ideas such a symmetry and conservation laws through a number of different topics including relativistic notation, relativistic particles, Feynman diagrams and discrete symmetries among others. You’ll have two hours per week of lectures studying this module.

This module will introduce you to a range of physical phenomena which exhibit macroscopic quantum coherence including Bose condensation in cold atomic gases, superfluidity in Helium-4 and superconductivity in metals and alloys. You’ll discuss their common features and general theoretical ideas as well as some of their applications. You’ll have two hours per week of lectures studying this module.

In this module you’ll receive an overview of spin dynamics and an introduction to nuclear magnetic resonance (NMR) and related techniques. You’ll gain knowledge about the key ideas, techniques and instrumentation used in this field and how they are applied in a range of situations. You’ll have two hours per week of lectures studying this module.

This module provides an introduction to the modern theory of gravitation: Einstein's general theory of relativity. This module is based on a regular series of two 1-hour lectures per week supplemented by a 2 hour workshop once a fortnight.

This module develops a range of modern astronomical techniques through student-centered approaches to topical research problems. You’ll cover a range of topics related to ongoing research in astronomy and astrophysics, and will encompass theoretical and observational approaches. This module is based on individual and group student-led activities involving the solution of topical problems including written reports and exercises, and a project.

The modules we offer are inspired by the research interests of our staff and as a result may change for reasons of, for example, research developments or legislation changes. This list is an example of typical modules we offer, not a definitive list.

## Careers

You will have a sound knowledge of the fundamental theories of physics and how to apply them to practical problem solving, and you will be well-prepared for a career in research, as a professional physicist, or for other high-flying positions in a wide range of areas.

### Professional accreditation

The Institute of Physics accredits bachelor and integrated masters degree programmes for the purposes of the professional award of Chartered Physicist. Chartered Physicist requires an IOP accredited degree followed by an appropriate period of experience during which professional skills are acquired.

An accredited integrated masters degree fulfils the academic requirements for Chartered Physicist.

### Average starting salary and career progression

In 2014, 87% of first-degree graduates in the School of Physics and Astronomy who were available for employment had secured work or further study within six months of graduation. The average starting salary was £23,046 with the highest being £30,000.*

* Known destinations of full-time home and EU first-degree graduates, 2013/14.

### Careers Support and Advice

Studying for a degree at The University of Nottingham will provide you with the type of skills and experiences that will prove invaluable in any career, whichever direction you decide to take. Throughout your time with us, our Careers and Employability Service can work with you to improve your employability skills even further; assisting with job or course applications, searching for appropriate work experience placements and hosting events to bring you closer to a wide range of prospective employers.

Have a look at our Careers page for an overview of all the employability support and opportunities that we provide to current students.

## Fees and funding

### Scholarships and bursaries

The University of Nottingham offers a wide range of bursaries and scholarships. These funds can provide you with an additional source of non-repayable financial help.

#### Home students*

There are several types of bursary and scholarship on offer. Download our funding guide or visit our financial support pages to find out more about tuition fees, loans, budgeting and sources of funding.

To be eligible to apply for most of these funds you must be liable for the £9,000 tuition fee and not be in receipt of a bursary from outside the University.

*** **A 'home' student is one who meets certain UK residence criteria. These are the same criteria as apply to eligibility for home funding from Student Finance.

#### International/EU students

The University of Nottingham provides information and advice on financing your degree and managing your finances as an international student. The International Office offers a range of High Achiever Prizes for students from selected schools and colleges to help with the cost of tuition fees.## Key Information Sets (KIS)

#### Key Information Sets (KIS)

KIS is an initiative that the government has introduced to allow you to compare different courses and universities.

#### How to use the data

## Imagine...

finding the perfect course**Disclaimer**This online prospectus has been drafted in advance of the academic year to which it applies. Every effort has been made to ensure that the information is accurate at the time of publishing, but changes (for example to course content) are likely to occur given the interval between publishing and commencement of the course. It is therefore very important to check this website for any updates before you apply for the course where there has been an interval between you reading this website and applying.

## Contact

Prof Philip Moriarty

Admissions Secretary:

Mrs Julie Kenney