This module will introduce you to the mathematical language behind the classical mechanics describing our universe. You will learn about Lagrangians and Hamiltonians, the starting place from which we can determine the dynamics of complicated systems, like pendula and planets orbiting the sun, as well as the origin of conserved quantities such as energy and momentum.
This is a fun module. At school you learnt Kepler’s Laws, Newton’s Law of Gravity, and F=ma, but how can you derive these amazing results? Where do they come from?
Here you will find out, as we introduce you to the mathematical language behind the classical mechanics describing our universe. You will learn about Lagrangians and Hamiltonians, the starting place from which we can determine the dynamics of complicated systems, like pendula and planets orbiting the sun, as well as the origin of conserved quantities such as energy and momentum. For two hours a week we will take you into the mathematics and ideas of giants like Newton, Euler, Lagrange, Noether and Hamilton.
Among many exciting things, you will study:
- Newton’s Laws and deriving the orbits predicted by Kepler
- Lagrangians and Hamiltonians, the building blocks behind classical mechanics
- The Euler-Lagrange equations describing the dynamics behind classical systems
- Rigid bodies – introducing moments of inertia, centre of mass and more so that we can apply these results to many particle rigid systems, like pendulums and even you
- Constraints – how to determine the dynamics of a system where it is constrained, for example, the motion of an explorer constrained to be on the surface of the earth
- The motion of charged particles, like electrons in an electromagnetic field
- Hamilton’s equations as an alternative way to determine the dynamics of a system, particularly useful when we are searching for conserved quantities like angular momentum
- Spinning tops – what? You heard right, the vital roles of gyroscopes in our life are understood by 5-year-olds, but the mathematics certainly is not. Thanks to this course, now you can understand that as well.