Biochemistry MSci

   
   
  

Fact file - 2019 entry

Qualification
MSci Hons Biochemistry
UCAS code
C703
Duration
4 years full-time
A level offer
AAB
Required subjects
Chemistry and at least one other science subject at A level (biology preferred). A pass is required in science practical tests, if assessed separately. GCSE English language and maths at grade 4 or above are also required.
IB score
34 (5/6 in chemistry and another science, in any order, at Higher Level) 
Course location
Medical School and University Park Campus 
Course places
105 places across all biochemistry degrees
School/department
 

Overview

Gain a broad understanding of modern biochemistry, exploring the molecular and cellular aspects of life and disease. The extra MSci year provides extensive experience of research, which is particularly suitable for students considering a research career.
Read full overview

Highlights of biochemistry at Nottingham

  • Expand your study through a wide choice of optional modules, including subjects from other schools such as languages or business
  • Benefit from substantial laboratory experience from year one
  • Travel while you learn, with opportunities to study abroad in your second year
  • Contribute to real research during your third and fourth year projects, working alongside our research groups
  • Flexibility to change between the BSc and MSci once you start the course
  • Have a large percentage of your learning based in a Medical School with academic staff who have an interest in human biochemistry
 

You’ll study a broad curriculum of biochemistry, covering cell biology, molecular genetics, biotechnology, metabolism and nutrition. This breadth of knowledge provides opportunities for a variety of careers in industry or research. 

Through optional modules and research projects, you can tailor the course to focus on the specific areas of biochemistry that interest you. As our courses have a similar first year, there are also opportunities to switch to another biochemistry degree path at the end of year one.

Yearly overviews

Year one 

Introductory modules will establish the fundamental aspects of cell biology, biochemistry and genetics. You’ll also cover the essential chemistry that you’ll need to understand life at the molecular level.

A core skills module will develop your academic skills of experimental design, data handling and analysis, and scientific writing. Through lectures, small-group tutorials and workshops, the main biochemistry themes for the first year are reinforced.

You’ll also have 40 credits of optional modules exploring other areas of life sciences such as evolution or neuroscience. Up to 20 credits can be taken from another school such as languages or business. 

Year two

Building on your knowledge from year one, you’ll undertake a project that will conclude with a dissertation. Skills developed include research design, calculations and statistics, public understanding of science, and scientific writing.

Other modules will expand your knowledge on the structure, function and analysis of genes and proteins. Teaching will be a mix of lectures, practicals and workshops. 

More advanced optional modules are available. Topics will complement your biochemistry training while providing an opportunity to diversify your learning. 

Year three

A major feature is an individual project which may be lab, bioinformatics or literature based. You’ll be provided with a list of topics to choose from, allowing you to develop a project in an area that interests you. Learning outcomes will include experimental design, writing a scientific report, in depth literature research and critical analysis of data.

In addition to the project, you’ll look at the biochemistry of disease. Through lectures you’ll study inborn errors of metabolism and neurological disorders. Another core module will explore genetic engineering, methods for the purification of recombinant proteins, and the life history of a protein.

Diverse optional modules push your knowledge further. You may choose to concentrate on clinical diagnosis or develop your understanding of protein folding. 

Year four

In your final year, you’ll concentrate on a year-long masters-level research project. A great introduction to postgraduate study, you’ll gain experience in writing a literature review and a research grant proposal. The practical component will involve collection of data and detailed analysis. In an additional module, you’ll learn about research presentation skills including writing papers and preparing posters and webpages.

Advanced optional modules are available to complement your research or expose you to new ideas that will improve your understanding of science.  

 

Learning and assessment

Teaching methods

You will learn through a variety of methods depending on the module. These may include:

  • laboratory classes
  • lectures
  • seminars
  • tutorials
  • workshops

You will study in the Life Sciences Building on University Park Campus and the Medical School, which is embedded in the Queen’s Medical Centre. There is a footbridge linking the Medical School to University Park Campus, allowing easy access to facilities on both sites.  

Assessment methods

Assessment varies on the module being studied but typically is a combination of:

  • dissertations
  • essays
  • exams
  • laboratory reports
  • presentations

Exams happen twice a year at the end of each semester.

Find out more about our teaching on our school website

 
Study abroad and placements

We offer the chance to study abroad at an approved partner university through the Universitas 21 programme. This is an exciting opportunity to gain a global perspective of science, boost your communication skills, and to discover a new culture.

There is also the possibility to gain valuable work experience with an optional placement year. Placements are a great opportunity to see what the sector you want to go into is like, try out specific job roles, and to gain the skills that employers want.

Please note that placements have to be organised by the student and approved by the school. The University's Careers and Employability Service can provide advice on how to find and apply for a placement. 

Information on fees for a placement or study abroad year can be found on the fees website.

 

Student support

All students have a personal tutor. Personal tutors are members of academic staff in the school who will:

  • monitor your academic progress and check on your wellbeing
  • provide exam marks and help you reflect on feedback
  • act as a first point of contact for any guidance on academic or personal matters

At Nottingham we still offer small group tutorials. This ensures you have enough time to build a relationship with your tutor and benefit from their support. Your fellow tutees also provide peer support.

Additionally, the school has a dedicated Welfare Officer and a Student Liaison Officer who are available to help you adapt to university life and provide advice on more complex issues.  

Peer mentoring

BiochemSoc is the student-led biochemistry society. Alongside organising social, sporting and networking events, BiochemSoc provide peer mentoring. You will be matched with a senior student who can offer help and support and introduce you to the rest of what the society offers. 

 
Student profile video
 
 

Entry requirements

A levels

AAB, including chemistry and at least one other science subject at A level (biology preferred). A pass is required in science practical tests, if assessed separately. GCSE English language and maths grade 4 or above are also required. 

Understand how we show GCSE grades

 

English language requirements

IELTS 6.5 (no less than 6.0 in any element)

For details of other English language tests and qualifications we accept, please see our entry requirements page.

If you require additional support to take your language skills to the required level, you may be able to attend a presessional course at the Centre for English Language Education, which is accredited by the British Council for the teaching of English in the UK.

Students who successfully complete the presessional course to the required level can progress onto their chosen degree course without retaking IELTS or equivalent.

 

Alternative qualifications

For details please see the alternative qualifications page.

 

Foundation course

Science Foundation Certificate

International students only

International students (non-EU) who do not have the required qualifications or grades to go directly onto an undergraduate degree course, may be interested in the Science Foundation Certificate delivered through The University of Nottingham International College. You are guaranteed a place on selected undergraduate courses if all progression requirements are met. 

Science with Foundation Year

Home, EU and international students

If you have achieved high grades in your A levels (or equivalent qualifications) but do not meet the current subject entry requirements for direct entry to your chosen undergraduate course, you may be interested in our one year science foundation programme. Applicants must also demonstrate good grades in previous relevant science subjects to apply. You are guaranteed a place on selected undergraduate courses if all progression requirements are met.  

 

Flexible admissions policy

In recognition of our applicants’ varied experience and educational pathways, the University of Nottingham employs a flexible admissions policy. We may make some applicants an offer lower than advertised, depending on their personal and educational circumstances. Please see the University’s admissions policies and procedures for more information.
 
 
 

Modules

The following is a sample of the typical modules that we offer as at the date of publication but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. Due to the passage of time between commencement of the course and subsequent years of the course, modules may change due to developments in the curriculum and the module information in this prospectus is provided for indicative purposes only.

Typical year one modules

Core Skills in Biochemistry
With lectures, workshops and tutorials this module will enable you to develop the core skills needed by biochemists in scientific writing, data handling and analysis, experimental design and scientific presentations. This module is designed to develop your problem solving scientific skills. An important aspect of this module is the integral tutorial system which will allow you to get to know the member of staff who will be your tutor for the duration of your studies.
 
Genes, Molecules and Cells
This module combines lectures and laboratory classes and introduces you to the structure and function of significant molecules in cells, and the important metabolic processes which occur inside them. You will study, amongst other topics, protein and enzyme structure and function, the biosynthesis of cell components, and the role of cell membranes in barrier and transport processes. You'll examine how information in DNA is used to determine the structure of gene products. Topics include DNA structure, transcription and translation and mutation and recombinant DNA technology.
 
Fundamental Inorganic and Organic Chemistry
This module provides the essential chemistry that biochemists need to understand the life process at the molecular level. The module includes atomic and molecular structure, bonding and reactivity, spectroscopy, “curly arrow” organic reactions and core organic chemistry and is taught by means of lectures and workshops.
 

Optional modules

You also choose 40 credits of optional modules, 20-40 from the School of Life Sciences or 20 from Life Sciences and 20 from other schools in the University. Several options from the School of Chemistry are available. Options from within the School of Life Sciences are as follows:

Life on Earth
Life on Earth provides an introduction to the fundamental characteristics and properties of the myriad of organisms which inhabit our planet, from viruses, bacteria and Archaea, to plants and animals. In weekly lectures, and regular laboratory practical classes, you will consider how living organisms are classified, how they are related genetically and phylogenetically, and basic aspects of their structure and function.
 
Evolution, Ecology and Behaviour
Starting with Darwin’s theory of evolution, you will learn how natural selection and other evolutionary forces have shaped the ways in which organisms interact with each other and their environment. In addition to lectures, practical classes will give you hands-on experience with a range of ecological and behavioural concepts in the laboratory and the field.
 
Fundamentals of Neuroscience
This module will give you a good grounding in the basic principles of the nervous system of humans and other animals. Topics will include neuroanatomy, cellular neuroscience, neuropharmacology, sensory systems, neuroendocrinology, memory, behavioural neuroscience and diseases of the nervous system. These will be delivered through weekly lectures and practical classes.
 
Human Physiology
In this module, you will be introduced to the physiology of the major systems eg cardiovascular, nervous, and musculoskeletal, mostly in man, including some aspects of drug action. This module will allow you to understand your biochemical and genetics knowledge in the context of the intact organism. This module includes lectures and laboratory classes.
 
 

Typical year two modules

Structure, Function and Analysis of Proteins

This module considers the structure and function of soluble proteins and how individual proteins can be studied in molecular detail. More specifically you will learn about the problems associated with studying membrane-bound proteins and build an in-depth understanding of enzyme kinetics and catalysis. You will learn about the practical aspects of affinity purification, SDS PAGE, western blotting, enzyme assays, bioinformatics and molecular modelling approaches.

 
Signals and Metabloic Regulation
This module considers the mechanisms and purpose of cell to cell signalling and metabolic regulation and includes the regulation of carbohydrate and lipid metabolism and an outline of the various major signalling systems in mammals including signal transduction in G-protein coupled signalling systems, growth factors, cytokines and their receptors, cell-cell signalling and the extracellular matrix (ECM) and the role of the ubiquitin-proteasome system. The regulation and integration of various metabolic pathways will be covered in health and disease illustrated with specific examples and related to the signalling pathways covered in this module to provide an understanding of how biochemical processes are integrated and regulated. The module also includes laboratory classes where you will use techniques to study signal transduction and metabolism.
 
Structure, Function and Analysis of Genes

This module will provide you with a comprehensive understanding of the structures of DNA and RNA and how the information within these nucleic acids is maintained and expressed in both prokaryotic and eukaryotic cell types. Additionally, this module describes how nucleic acids can be manipulated in vitro using molecular biological approaches. Practical classes will focus your learning on the cloning and manipulation of DNA to express recombinant proteins in bacterial systems.

 
Higher Skills in Biochemistry
This module further develops and enhances the skills you will have learned in the year one skills module. In year two you will write a short dissertation, solve biochemical problems, explore the scientific method applied to biochemistry, learn how to present science to the public and look issues around the ethics of science and research. The module includes lectures, tutorials and workshops.
 

Optional modules

In addition to the above compulsory modules you have 40 credits of optional modules, at least 20 credits of which must be from the School of Life Sciences or the School of Chemistry but 20 credits can be from across the University. School of Life Sciences and School of Chemistry modules include: 

From Genotype to Phenotype
This module serves as an introduction to the key skills of experimental design and data interpretation related to genomic analysis. You will design a series of ‘virtual’ laboratory experiments, with appropriate controls in order to probe the function of a particular gene in a physiological condition.
 
Intermediate Organic and Inorganic Chemistry
This module develops your chemical knowledge and understanding from year one with organometallics: structure, bonding and principal reaction types, stereochemistry: definitions, examples and applications, organic spectroscopy: determination of structure through NMR, IR and MS, functional group interconversion: of alcohols, amines, carbonyls, and alkenes, synthesis and retrosynthesis: introduction to retrosynthetic analysis and synthesis.
 
Molecular Imaging

This module enables you to develop an elementary understanding of modern molecular imaging techniques, in addition to a historical overview of microscopy. You will acquire theoretical and practical knowledge of how to localise and analyse macromolecule behaviours in fixed and living cells.

 
The Pharmacological Basis of Therapeutics

This module will provide an in-depth analysis of drug action, and its application to the design and use of current therapeutics. You will learn to define what drugs are, the different ways they act at the cellular and molecular level, and the pharmacokinetic principles underlying drug absorption, distribution, metabolism and elimination. You will explore examples in cardiovascular and respiratory disease, diabetes and obesity, CNS disorders, cancer and infectious disease. Overall, you will develop a deep understanding of what the discipline of pharmacology represents, and its application to both basic biological research and current and future medical advances.

 
Microbial Biotechnology

You'll cover the key groups of eukaryotic and prokaryotic microorganisms relevant to microbial biotechnology, principles of GM, and strain improvement in prokaryotes and eukaryotes. The impact of “omics”, systems biology, synthetic biology and effects of stress on industrial microorganisms are explored, alongside the activities of key microorganisms that we exploit for biotechnology.

 
Infection and Immunity 

In this module you will study basic immunology, learning about the organs, cells and molecules of the immune system and the mechanisms engaged in the generation an of immune response to pathogens. You will learn by studying examples of types of human pathogens (viral, bacterial, fungal, protozoa and helminths), the varied nature of the immune response, depending on the pathogen, its niche(s) in the host and pathogen strategies for invading and surviving in the host. You will learn how immunological methods can be effectively utilized for disease diagnosis and vaccine development, and about the consequences of failure of normal immune function, including autoimmunity and hypersensitivity.

 
Macromolecular Systems: Structure and Interactions

This module covers various aspects of macromolecular structure of biological molecules including proteins and DNA and how these molecules interact in cells. You will learn about the biotechnological applications of these macromolecules and their interactions, and the methods that are available to study them.

 
 

Typical year three modules

Biochemistry of Disease
This module will encourage you to use your biochemical knowledge to explain topics such as the hormonal control of metabolism, how fasting and overfeeding affects the body, and how problems within human body processing can lead to diseases. In addition, you will be able to describe two classes of important biochemical diseases including the inborn errors of metabolism and neurological disorders. There will be one hour of lectures a week for a full year.
 
Biochemistry Research Project
This project aims to give students the ability to analyse a relevant biological problem in-depth in a modern research environment. There will be three different approaches available including the opportunity to research a laboratory-based project on a topic related to the interests of academic staff, a group-lab based project with outcomes to be decided by the student or an individual topic of interest with an in-depth literary survey of its background. There will be two days a week of project work.
 
Advanced Biochemistry
This module is divided into three parts: Firstly the application of genetic engineering to construct vectors that maximize the expression the expression of protein from cloned genes or cDNAs in heterologous systems will be discussed. Modern methods for the purification of recombinant proteins will be described. In the spring the module covers the life history of a protein from birth (synthesis) to death (apoptosis). The other major aspects that are involved include a discussion of protein folding, the cytoskeleton, protein and vesicle trafficking including endocytosis and protein degradation.
 

Optional modules 

In addition to the above modules you will have 50 credits of optional modules available including:

Biochemistry of Cancer
This module covers some of the more modern ideas surrounding tumourigenesis and tumour progression. The first part of the course covers our current understanding of the molecular basis of tumour progression. Following lectures will focus both on research into the fundamentals of cancer biology and the biochemical basis for the treatment of patients with cancer. 
 
Chemical Biology and Enzymes
This module will introduce you to the foundations of enzymological, chemical and molecular biological techniques needed to probe cellular processes and catalysis at the forefront of Chemical Biology research. By the end of the module you will understand the basic principles of protein expression, mutagenesis and purification, yeast two and three hybrid technology, protein NMR and Crystallography among other topics. There will be one and half hours of lectures a week.
 
Molecular Microbiology and Infection
This module focuses on the molecular biology that drives the fundamental principles behind the survival of microorganisms and their interaction with humans. Lectures will discuss the interaction between the host and pathogens and how they drive the mechanisms of infection and immunity. There will be two hours of lectures a week.
 
Signal Transduction
In this module you will examine the molecular hardware and operational concepts used by eukaryotic cells to govern their growth, proliferation and phenotypic development. You will study how cells respond to their environment and communicate via the exchange of signalling factors that bind to specific target receptors. There will be two hours of lectures a week.
 
Protein Folding and Biospectroscopy
This module will develop an understanding of protein structure, stability, design and methods of structural analysis. In addition you will understand the protein folding problem and experimental approaches to the analysis of protein folding kinetics and the application of site-directed mutagenesis. You will also be expected to develop a number of spectroscopic experimental techniques to probe protein structures. There will be two hours of lectures a week.
 
Molecular Basis of Medicine
During this module you will be building on previous learning and acquiring knowledge, skills and attitudes required for assessment and management of patients with a core spectrum of clinical presentations and conditions which involve or result from alterations to biochemical pathways. This includes an understanding of the normal structure and function of important biological molecules in human cells and of important metabolic processes that occur within cells and the structure and function of our genetic material. This will predominantly be within lectures and seminars.
 
Molecular Diagnostics and Therapeutics
This module covers the use of various biochemical and molecular biological analytical techniques employed in clinical diagnosis, as well as the development of new molecular therapies based on modern biochemical and molecular biological techniques. By the end of the module you will understand the scientific basis behind a variety of molecular medical diagnostics and the methods for the development of new molecular therapies. The module is assessed by a two-hour essay based exam. 
 
 

Typical year four modules

Research Presentation Skills

This module offers an introduction to the skills required in a modern scientific career. Through a series of lectures, you will become familiar with the best practice in oral, written and internet-based communication skills. This will be supplemented by tutorials, in which you will discuss recent key papers with peers, and write for a lay audience. Workshops will give you the opportunity to produce materials such as a web-page and poster. This module consists of one two hour lecture each week, and a series of single six-hour workshops over six weeks.

 
Research Project
The project is a year-long module. Preparatory work (literature review and familiarisation with laboratory/field safety protocols etc.) occurs in autumn, with the bulk of the practical work in spring. You will choose the topic of your project from a list of suggestions relevant to your degree subject and will finalise this after consultation with your supervisor. The project involves an extensive piece of detailed research. Reading and collating earlier research by other scientists working in the area is an essential component. You will use your literature review to write a research grant proposal, which outlines the hypotheses to be tested, the proposed experimental design and the research costs associated with the project. The practical component involves collection of data from a laboratory or field investigation and appropriate analysis. Your findings will be interpreted in the context of previous work, and written up in a clear and concise final report in the form of a research paper.
 

Optional modules

In addition to the above compulsory modules students choose 20 credits of optional modules from Life Sciences or across the University including from:

Cutting Edge Research Ideas in Molecular Biology
This module will bring you up to date with the latest technological developments in biochemistry that you are unlikely to have encountered in detail in your first three years. We also discuss and explore how new technologies with broad implications come into existence and follow the process of establishment, acceptance and dissemination through the scientific community. This module involves having a three hour workshop each week. 
 
Advanced Experimental Design and Analysis
This is an advanced level biological statistics module, building on basic undergraduate (Levels one and two) training. Lectures discuss concepts in experimental design, biological probability, generalised linear modelling and multivariate statistics. Practical sessions build on this conceptual outline, giving you hands-on experience of problem solving and analytical software, and some basic programming skills. You will spend three to four hours within lectures and workshops when studying this module.
 
Process and Practice in Science
A consideration of science ‘as a process’, with brief introductions to the history, philosophy and sociological norms of science. You will cover aspects of the scientific literature and scientific communication, peer review, 'metrics’, including citation analysis, journal impact factors, and the 'h' and other indices of measuring scientists' performances. You will also cover ethics in science and the changing relationship between scientists, government and the public. You will have a three hour lecture once per week during this module.
 
As well as the above optional modules there are a range of modules that deal with various topics in molecular life sciences, some clinically related, that students can choose from.
 
 
 

Careers

On completion of the course, you will have developed a thorough understanding of the fundamental aspects of cell biology, biochemistry, and genetics. Your research skills will be at a level that allows you to compete for the best postgraduate positions. Throughout the course you will have built up a range of transferable skills in presentation, interpretation and criticism of scientific data. These are all skills valued by employers. 

Recent graduate destinations include:

  • Cambridge Bioscience: technical sales (medical research)
  • EY: audit trainee
  • Essex and Suffolk Water: water quality scientist
  • Inpharmation: business development consultant (pharmaceuticals)
  • NHS: biomedical scientist
  • Retroscreen Virology Ltd: project administrator (medical research)
  • Succinct: assistant editor (media and communications)
  • Vectura: scientist (pharmaceutical industry)

Find out more about the career options available to biochemistry graduates, including recent Nottingham graduate destinations by visiting our careers page

Average starting salary and career progression

In 2017, 96.5% of undergraduates in the school secured work or further study within six months of graduation. The average starting salary was £20,000 with the highest being £41,600.*

* Known destinations of full-time home undergraduates, 2016/17. Salaries are calculated based on the median of those in full-time paid employment within the UK.


Careers Support and Advice

Studying for a degree at the University of Nottingham will provide you with skills and experiences that will prove invaluable in any career, whichever direction you decide to take. Our Careers and Employability Service can also work with you: assisting with job or course applications, searching for appropriate work experience placements and hosting events to bring you closer to a wide range of prospective employers.

Have a look at our biochemistry careers page for an overview of employability support for current students and guidance on career paths.

 
 

Fees and funding

Scholarships and bursaries

The University of Nottingham offers a wide range of bursaries and scholarships. These funds can provide you with an additional source of non-repayable financial help. For up to date information regarding tuition fees, visit our fees and finance pages.

Home students*

Over one third of our UK students receive our means-tested core bursary, worth up to £2,000 a year. Full details can be found on our financial support pages.

* A 'home' student is one who meets certain UK residence criteria. These are the same criteria as apply to eligibility for home funding from Student Finance.

International/EU students

Our International Baccalaureate Diploma Excellence Scholarship is available for select students paying overseas fees who achieve 38 points or above in the International Baccalaureate Diploma. We also offer a range of High Achiever Prizes for students from selected countries, schools and colleges to help with the cost of tuition fees. Find out more about scholarships, fees and finance for international students.

 
 
 

Key Information Sets (KIS)

 

KIS is an initiative that the government has introduced to allow you to compare different courses and universities. 

How to use the data

Disclaimer
This online prospectus has been drafted in advance of the academic year to which it applies. Every effort has been made to ensure that the information is accurate at the time of publishing, but changes (for example to course content) are likely to occur given the interval between publishing and commencement of the course. It is therefore very important to check this website for any updates before you apply for the course where there has been an interval between you reading this website and applying.

Imagine...

having the flexibility to tailor your degree to your interests
+44 (0)115 951 5559 Make an enquiry

Contact

School Secretary
 

Video

 

 

 

 

Student Recruitment Enquiries Centre

The University of Nottingham
King's Meadow Campus
Lenton Lane
Nottingham, NG7 2NR

t: +44 (0) 115 951 5559
w: Frequently asked questions
Make an enquiry