Physics BSc

   
   
  

Fact file - 2017 entry

UCAS code:F300
Qualification:BSc Hons
Type and duration:3 year UG
Qualification name:Physics
UCAS code
UCAS code
F300
Qualification
Physics | BSc Hons
Duration
3 years full-time (available part-time)
A level offer
A*AA-AAA
Required subjects
Maths and physics
IB score
36 (6 in maths, plus 6 in physics and 6 in a third subject at Higher Level
Course location
University Park Campus 
Course places
185 places for all courses in the School of Physics and Astronomy
School/department
 

This course may still be open to international applicants for 2016 entry. Please visit our international pages for details of courses and application procedures from now until the end of August.

Overview

This degree provides you with a broad knowledge of physics, while developing a range of skills that are highly valued by employers.
Read full overview

This degree provides you with a broad knowledge of physics, while developing a range of skills that are highly valued by employers. Building on the core physics programme, you will study a range of specialised optional modules delivered by research scientists who are at the forefront of developments. You can further tailor your degree by taking modules in areas such as languages or business skills.

Year one 

You will build up your knowledge of the subject through modules in the core elements of physics. You will also develop the mathematical skills needed to speak the language of advanced physics, and carry out laboratory work to provide the background you need in experimentation and computation. You will also have the flexibility to select options in physics or elsewhere in the University in each semester.

Year two

The first-year modules lead into more advanced areas of the subject such as statistical physics and quantum mechanics. Similarly, you will have the opportunity to develop the core practical skills learned in the first year to undertake more advanced laboratory work, making frequent use of computer control in your experiments. Once again, you will be able to select options in each semester.

Year three

In the first half of the third year, you will finish off the core physics syllabus. Almost the entire second semester is then available for you to pursue those areas of the subject that interest you most, with options offered in everything from theoretical particle physics to medical imaging. You will also undertake an extended project supervised by a member of staff.

 

Entry requirements

A levels: A*AA-AAA, including physics and maths at A level

English language requirements 

IELTS 6.5 (no less than 6.0 in any element)

Students who require extra support to meet the English language requirements for their academic course can attend a presessional course at the Centre for English Language Education (CELE) to prepare for their future studies. Students who pass at the required level can progress directly to their academic programme without needing to retake IELTS. Please visit the CELE webpages for more information.

Alternative qualifications 

For details see the alternative qualifications page

Flexible admissions policy

We may make some applicants an offer lower than advertised, depending on their personal and educational circumstances.

Notes for applicants 

Scholarships - we offer a range of scholarships designed to assist you in settling in to your studies and meeting the financial requirements of your course. Some of these are means-tested but we also offer special scholarships that reward academic achievement. 

One is offered on the basis of performance in the qualifying examinations for university entrance (eg A levels). A scholarship package is also offered to reward good performance in the qualifying first-year examinations. This scheme includes special prizes that have been inaugurated in collaboration with our commercial partners. Full details of all scholarship prizes will be provided at the UCAS open days.

For more details about scholarships, please see www.nottingham.ac.uk/physics

 
 

Modules

Typical Year One Modules

There are typically ten lectures per week covering all modules, plus a couple of 2-hour workshops. All students are additionally supported by a weekly tutorial covering the work studied in all modules.
From Newton to Einstein 

This year-long module aims to introduce core topics in physics which will underpin all subsequent physics modules. You’ll discuss classical mechanics in the language of vectors and the key notion of harmonic motion which is extended to cover wave phenomena. You’ll have an introduction to Einstein's special theory of relativity as well as the basic ideas of electromagnetism and electrical circuits and quantum physics. 

 
Introductory Experimental Physics 

In this module you will receive: an introduction to the basic techniques and equipment used in experimental physics; training in the analysis and interpretation of experimental data; opportunities to observe phenomena discussed in theory modules and training in the skills of record keeping and writing scientific reports.

 
Frontiers in Physics 

This module introduces you to major areas of physics beyond those encountered in the core modules, including those at the forefront of modern research. Particular focus is placed on introductions to astronomy, biophysics and nanoscience. Other topics include condensed matter physics, atomic and particle physics and the physics of the environment.

 
Mathematics for Physics and Astronomy 

You will study a selection of mathematical techniques that are useful for analysing physical behaviour. The module topics are: complex numbers, calculus of a single variable, plane geometry and conic sections, ordinary differential equations, calculus of several variables and matrices and matrix algebra.

 
Computing for Physical Science 

In this year-long module you’ll learn the techniques for solving physical problems using MatLab. Topics will include variables and operators, vectors and arrays and plotting 2D and 3D graphs among others.

 
 
Typical Year Two Modules
The Quantum World 

This module will provide an introduction to the theory and applications of quantum mechanics, a theory that is one of the key achievements of 20th century physics. This module will begin with a discussion of simple systems and develop the mathematical formulation of quantum mechanics. The module will then extend the formalism to cope with the movement of particles and make links to the material that you have seen in the 'From Newton to Einstein' module.

 
Thermal and Statistical Physics

In this year-long module you’ll learn about the two main themes relating to the description of important physical properties of matter; thermodynamics and statistical mechanics. You’ll discover that they share common features through two hours of lectures weekly and four practical workshops throughout the year.

 
Classical Fields

In this module, you are introduced to the concepts of scalar and vector fields, and introduced to the mathematics of vector calculus that can be used to describe these fields. The mathematics will then be used to provide a framework for describing, understanding and using the laws of electromagnetism.

 
Wave Phenomena

Many physical systems support the propagation of waves, from the familiar waves on the surface of water to the electromagnetic waves that we perceive as light. The first half of the module will focus on optics: the study of light. Topics to be covered will include: geometrical optics; wave description of light; interference and diffraction; optical interferometry. The second half of the module will introduce more general methods for the discussion of wave propagation, and Fourier methods.

 
Intermediate Experimental Physics

In this module you will develop your experimental technique and gain experience of some key instruments and methods. The experiments will cover electrical measurements, optics and radiation. You will also learn how to use a computer to control experiments and to record data directly from measuring instruments.

 
 

Typical year three modules
Atoms, Photons and Fundamental Particles

In this year-long module you’ll be introduced to the physics of atoms, nuclei and the fundamental constituents of matter and their interactions. You’ll gain knowledge about the quantum mechanical description of their interactions. Every week, you’ll have two hours of lectures; you'll also have five 90-minute workshops throughout the year to aide your understanding.

 
Introduction to Solid-State Physics

In this year-long module you’ll be introduced to solid-state physics. You’ll explore the topics of bonding, crystal structures, band theory, semi-conductors, phonons and magnetism among others. You’ll apply theoretical ideas to the quantitative analysis of physical situations. You’ll have two hours per week of lectures, plus five 90 minute workshops throughout the year.

 
Physics Project

You will carry out a project drawn from one of several areas of physics. The project may be experimental, theoretical or computational in nature. Many of the projects reflect the research interests of members of academic staff. You’ll work in pairs and will be expected to produce a plan of work and to identify realistic goals for your project. Each pair has a project supervisor responsible for setting the project.

 
 

Typical Optional Modules

Here is a small sample of modules you will be able to choose from:

 

The Structure of Galaxies

This module will develop your current understanding of the various physical processes that dictate the formation, evolution and structure of galaxies. You’ll explore a number of topics including The Milky Way, The Dynamics of Galaxies, Active Galaxies and Galaxy Evolution among others. You’ll spend two hours per week in lectures studying this module.

 
Molecular Biophysics

This module will explore the structure of molecules of biological importance and their mutual interactions and dynamics. Emphasis will be placed on the physical determination of molecular structure and intermolecular forces. Furthermore, techniques to study dynamics on the molecular level will be discussed.

 

 

Soft Condensed Matter

This module will introduce you to the key concepts in soft condensed matter physics with a focus on the dynamic, structural and kinematic properties of materials falling into this category. You’ll also cover the phenomenology of phase transitions. You’ll have two hours per week of lectures studying this module.

 
Nonlinear Dynamics and Chaos

In this module you will develop your knowledge of classical mechanics of simple linear behaviour to include the behaviour of complex nonlinear dynamics. You’ll learn about the way in which nonlinear deterministic systems can exhibit essentially random behaviour because of sensitivity relating to initial conditions. You’ll have two hours per week of lectures studying this module.

 
The Structure of Stars

This module will develop your knowledge of the various physical processes occurring in stars of different types. You’ll use this knowledge to build both mathematical models and your qualitative physical understanding of stellar structure and evolution will be enhanced. You’ll have two hours per week of lectures studying this module.

 
Force and Function at the Nanoscale

This module will provide an introduction to how forces at the nanoscale are radically different to those observed in macroscopic systems and how they can be exploited in nanometre-scale processes and devices. You’ll spend two hours per week in lectures and have two workshops during the semester.

 
Semiconductor Physics

This module introduces you to the physical properties of semiconductors and low-dimensional systems, such as quantum wells, wires and dots. The aim is to explain the physics that underlies optical and transport properties of these structures and their applications in advanced technologies. This course is structured in two main parts; the foundation of quantum mechanics and solid state physics needed to describe a low dimensional system. You’ll spend two hours per week in lectures. 

 
Functional Medical Imaging

The techniques for magnetic resonance imaging (MRI) and spectroscopy (MRS) are explored. You’ll be introduced to the brain imaging technique of functional magnetic resonance imaging (fMRI), giving an overview of the physics involved in this technique. You’ll spend two hours per week in lectures. 

 
Theoretical Elementary Particle Physics

You’ll be introduced to the key theoretical ideas of elementary particle physics, such as symmetry and conservation laws, and build the foundations for a mathematical description of particle properties and interactions. You’ll spend two hours per week in lectures.

 
Scientific Computing

This module aims to provide you with the skills necessary to use computational methods in the solution of non-trivial problems in physics and astronomy. You’ll also sharpen your programming skills through a three hour computing class and one hour of lectures per week. 

 
 

The modules we offer are inspired by the research interests of our staff and as a result may change for reasons of, for example, research developments or legislation changes. The above list is a sample of typical modules we offer, not a definitive list.

 
 

Careers

You will have a sound knowledge of the fundamental theories of physics and how to apply them to practical problem solving, and you will be well-prepared for a career in research, as a professional physicist, or for other high-flying positions in a wide range of areas.

Professional accreditation

The Institute of Physics accredits bachelor and integrated masters degree programmes for the purposes of the professional award of Chartered Physicist. Chartered Physicist requires an IOP accredited degree followed by an appropriate period of experience during which professional skills are acquired. 

An accredited bachelor degree partially fulfils the academic requirement for Chartered Physicist status. Further study to masters level, or equivalent work-based experience, is required to achieve Chartered Physicist. 

institute of physics
 

Average starting salary and career progression

In 2014, 87% of first-degree graduates from the School of Physics and Astronomy who were available for employment had secured work or further study within six months of graduation. The average starting salary was £23,046 with the highest being £30,000.*

* Known destinations of full-time home and EU first-degree graduates, 2013/14.

Careers Support and Advice

Studying for a degree at The University of Nottingham will provide you with the type of skills and experiences that will prove invaluable in any career, whichever direction you decide to take. Throughout your time with us, our Careers and Employability Service can work with you to improve your employability skills even further; assisting with job or course applications, searching for appropriate work experience placements and hosting events to bring you closer to a wide range of prospective employers.

Have a look at our Careers page for an overview of all the employability support and opportunities that we provide to current students.  

 
 

Fees and funding

Scholarships and bursaries

The University of Nottingham offers a wide range of bursaries and scholarships. These funds can provide you with an additional source of non-repayable financial help. For up to date information regarding tuition fees, visit our fees and finance pages.

Home students*

Over one third of our UK students receive our means-tested core bursary, worth up to £2,000 a year. Full details can be found on our financial support pages.

* A 'home' student is one who meets certain UK residence criteria. These are the same criteria as apply to eligibility for home funding from Student Finance.

International/EU students

The University of Nottingham provides information and advice on financing your degree and managing your finances as an international student. The International Office offers a range of High Achiever Prizes for students from selected schools and colleges to help with the cost of tuition fees.

 
 
 

Key Information Sets (KIS)

Key Information Sets (KIS)

KIS is an initiative that the government has introduced to allow you to compare different courses and universities.

 

How to use the data

Imagine...

finding the perfect course
It's #MeantToBe
Get in touch: 
+44 (0)115 951 5165
Find us on FacebookFollow us

Disclaimer
This online prospectus has been drafted in advance of the academic year to which it applies. Every effort has been made to ensure that the information is accurate at the time of publishing, but changes (for example to course content) are likely to occur given the interval between publishing and commencement of the course. It is therefore very important to check this website for any updates before you apply for the course where there has been an interval between you reading this website and applying.

Contact

Admissions Tutor:
Prof Philip Moriarty
Admissions Secretary:
Mrs Julie Kenney  
anisamazidian

Video

 
robinmurphy

Video 

 

 

 

Student Recruitment Enquiries Centre

The University of Nottingham
King's Meadow Campus
Lenton Lane
Nottingham, NG7 2NR

t: +44 (0) 115 951 5559
w: www.nottingham.ac.uk/faqs
Make an enquiry