Mechanical Engineering BEng

   
   
  

Fact file - 2018 entry

Qualification
Mechanical Engineering | BEng Hons
UCAS code
H302
Duration
3 years full-time
A level offer
AAB
Required subjects
three A levels including A in maths and preferably physics (including a pass in the practical element), excluding general studies and critical thinking.

A foundation year is available for those with BBB grades but not in the required subjects.
IB score
34 (6 in maths at Higher Level or 7 at Standard Level; plus preferably physics at Higher or Standard Level) 
Course location
University Park Campus 
Course places
150 (across BEng and MEng)
 

Overview

This course gives you the chance to apply scientific knowledge to the creation of designs, products and machines that fulfil specific needs.
Read full overview
This information is based on the curriculum for 2017 entry. The Department of Mechanical, Materials and Manufacturing Engineering is currently reviewing course structure and modules ahead of 2018 entry. Please keep checking this page for the latest details.

The mechanical engineering degree provides a broad foundation in engineering science and engineering design and the opportunity to develop interpersonal and management skills. At the end of the second year, you may also opt to take one of the specialist streams in aerospace, automotive, bioengineering, management, a modern language, materials or manufacture.

Years one and two

The first two years provide a good grounding in the broad fundamentals of mechanical engineering science and engineering design. The science subjects studied include thermodynamics, fluid mechanics, solid mechanics, dynamics and electro-mechanical systems. In design, the emphasis is on project work and in both the first and second years, you will undertake a design, make and test project, which you will manufacture in the department's student workshop.

At the end of the second year, you can opt to switch to the four-year MEng degree provided that you have obtained at least 55 per cent in the end of year assessment. Alternatively, you can choose to remain on the three-year BEng degree.

Year three 

A major individual project makes up a quarter of your studies. This may involve computational and or experimental investigations often related to research activities within the school. You will also study a mix of compulsory and optional modules, the latter allowing you to tailor the course to your interests.

More information 

See also the Engineering and Science Foundation Year Programme.
 

Entry requirements

A levels: AAB, including maths (grade A) and preferably physics (including a pass in the practical element).

English language requirements 

IELTS 6.0 (no less than 5.5 in any element)

If you require additional support to take your language skills to the required level, you can attend a presessional course at the Centre for English Language Education (CELE), which is accredited by the British Council for the teaching of English. Successful students can progress onto their chosen degree course without taking IELTS again.

Alternative qualifications 

For details please see alternative qualifications page

Foundation year - available for this course

Flexible admissions policy

In recognition of our applicants’ varied experience and educational pathways, The University of Nottingham employs a flexible admissions policy. We may make some applicants an offer lower than advertised, depending on their personal and educational circumstances. Please see the University’s admissions policies and procedures for more information.

Notes for applicants

Scholarships - for details of scholarships please see www.nottingham.ac.uk/engineering/funding

 
 

Modules

 

This information is based on the curriculum for 2017 entry. The Department of Mechanical, Materials and Manufacturing Engineering is currently reviewing course structure and modules ahead of 2018 entry. Please keep checking this page for the latest details.
Typical year one modules
Compulsory:

Engineering Design and Design Project

This year long module introduces students to basic concepts and practice of design and manufacture with a semester long group and individual project. It includes the following topics:  

  • the process of design supported by practical design activities
  • engineering drawing 
  • solid modelling and drawing generation  
  • machine elements 
  • group Design Project with Integrated Individual Element  
  • machine shop practical training 

Student groups will undertake a different group design project in semester two aligned to their subject stream: Mechanical, Manufacturing Engineering or Product Design and Manufacture

 
Materials and Manufacturing
This year long module introduces students to the properties of materials, the main failure mechanisms which a designer will be concerned with (e.g overload, fracture, creep, fatigue) and core manufacturing methods used in engineering applications.
It includes the following topics:
  • the role of materials and material properties in the design process
  • the selection and use of materials
  • the basic science underlying material properties and approaches to avoid failure of materials to provide the knowledge with which to design materials with better properties. For each property (or group of properties), a case study of practical design application will be addressed
  • an introduction to manufacturing in the UK 
  • an introduction to high value – low volume and low value – high volume manufacturing processes including: casting, machining, moulding, forming, powder processing, heat treatment, surface finishing and assembly
  • an introduction into additive manufacturing an introduction to manufacturing metrology 
 
Mathematics for Engineers
This module introduces a range of fundamental elementary mathematical techniques that can be applied to mechanical engineering, manufacturing and product design problems. It includes:
  • the calculus of a single variable, extended to develop techniques used in analysing engineering problems
  • techniques for solving selected first-order and second-order differential equations
  • the algebra of complex numbers to provide a key mathematical tool for analysis of linear mathematical and engineering problems
  • the complexity of solving general (large) systems of equations 
  • advanced differential and integral calculus of one variable
  • first-order ordinary-differential equations
  • algebra of complex numbers
  • matrix algebra and its applications to systems of equations and eigenvalue problems
  • functions and their properties
  • vector spaces and their applications
  • vector calculus
 
Programming, Professional and Laboratory Skills
This year long module comprises a number of elements to provide students with:
  • professional engineering, information searching, data analysis, health and safety and oral presentations
  • laboratory skills and development of house style laboratory report
  • writing and understanding of computer programs including, loops, conditional statements, program flow, functions, basic input output, sound processing, image processing,  variables, (1/2D) arrays, advanced plotting and simple computer graphics
  • the application of computer code to control mechanical devices as part of a group project
  • introduction to professional responsibilities of engineers including the fundamental role of sustainability, legal issues, patents, ethics and standards 
 
Statics and Dynamics
An introductory module covering analysis methods applicable to engineering design including:
  • review of basic mechanics : vectors, units, forces and moments, Newton’s laws
  • static equilibrium: force and moment analysis in design; frictional forces
  • free body diagrams and Pin-jointed structures
  • stress, strain and elasticity
  • multi-axial stress-strain; thin walled vessels under pressure
  • shear stress and torsion of shafts
  • plane stress; Mohr's circle analysis
  • beam bending: shear force & bending moment diagrams
  • second moments of area of cross-sections
  • bending stresses in beams 
  • linear and rotational motion: displacement, velocity and acceleration
  • relationship between angular and linear motion
  • newton's Laws for linear & rotational motion
  • linear and Angular Momentum, including conservation of momentum
  • work, Energy & Power, including kinetic & potential energy
  • geared systems
  • drive systems, including tangential drives and vehicles
  • load characteristics and steady-state characteristics
  • flywheel design
  • static and dynamic balancing
 
Thermodynamics & Fluid Mechanics 1
This is an introductory module covering the fundamental concepts and principles of thermofluids and their applications to engineering problems. Topics covered include: 
  • introductory concepts – properties of fluids, equations of state and the perfect gas law 
  • hydrostatics The first and second law of Thermodynamics, including heat engines 
  • fluid dynamics: Continuity, Euler and Bernoulli equations 
  • processes undergone by closed systems 
  • the steady flow energy equation 
  • momentum flows including linear momentum, friction factors & pipe flows heat transfer
 
 
Typical year two modules
Compulsory:

Computer Programming
This module sets out to equip students with the ability to create and run elementary programs with MATLAB and to exploit the tools which are built-in within it. As well as giving some insight into what all computer programming languages can do and being an academic subject in its own right, this module endeavours to equip students with a tool which will serve them well through the remainder of their engineering degree. You’ll spend two hours in lectures and one hour in practicals each week when studying this module.
 
Differential Equations and Calculus for Engineers
This module aims to allow you to understand, apply and manipulate standard techniques for solving important classes of ordinary differential equations. The fundamental concepts for solving partial differential equations relevant to modelling of thermodynamic, fluid or elastic problems is introduced and illustrated by obtaining fundamental solutions using techniques developed within the module. You’ll spend one hour in lectures and two hours in workshops each week when studying this module.
 
Materials in Design
This module aims to introduce students to methodologies for materials selection and process selection for design improvement. This module seeks to develop an understanding of the role of materials in the design of a range of components, from consumer goods to large scale structures. You’ll spend two hours in lectures and two hours in workshops each week when studying this module.
 
Design and Manufacture 2
This module will introduce design methodology through the entire design cycle from establishing users' needs and generating creative concepts to developing fabricable engineered solutions. You will develop knowledge of machine elements and mechanical systems and develop enhanced skills in communicating effectively in a team environment and operating machine tools for manufacturing and testing of design. You’ll spend one and a half hours in lectures, five hours in practicals and eight hours in workshops each week when studying this module.
 
Dynamics
This module aims to introduce concepts of rigid body dynamics, vibrations and feedback control, and develop the student's ability to analyse these aspects in simplified engineering situations. You’ll spend two hours in lectures, six hours in practicals and one hour in seminars each week when studying this module.
 
Thermodynamics & Fluid Mechanics 2
In this module you will apply concepts and principles of thermofluids to fluid mechanics, thermodynamics and heat transfer situations in simplified applied situations. You’ll spend two hours in lectures, eight hours in practicals and one hour in seminars each week when studying this module.
 
Management Studies 1
This module introduces students to modern management methods relevant to the running of a company. Topics include: introduction to basic economics; the essential requirements and aims of a business; preparing a business plan; accounting; interpretation of accounts; programme management; the essentials of “lean” manufacture and the management of innovation. You’ll spend two hours in lectures each week when studying this module.
 
Mechanics of Solids 2

The aim of this module is to introduce more advanced topics in linear elastic solid mechanics, plasticity and failure, introduce relevant analysis methods for this materials behaviour and demonstrate the application of these methods to the design of engineering components. You’ll spend two hours in lectures and two hours in tutorials each week when studying this module.

 
Mechanics of Solids 3
The aim of this module is to introduce more advanced topics in linear elastic solid mechanics, plasticity and failure. You will be introduced to relevant analysis methods for this materials behaviour and demonstrate the application of these methods to the design of engineering components. You’ll spend two hours in lectures, six hours in practicals and two hours in tutorials each week when studying this module.
 
 
Typical year three modules
Compulsory:

Management Studies 2
On completion of this module you will be able to understand how projects are selected and financially evaluated. You'll be able to construct and monitor the elements of an engineering or business programme and acquire an ability to manage risks and quality issues in the industrial and business context. You'll develop an understanding of the basics of English Law. You’ll spend two hours in lectures each week when studying this module.
 
BEng Individual Project
The project aims to give you experience in the practice of engineering at a professional level. It involves the planning, execution and reporting of a programme of work which will normally involve a mixture of experimental, theoretical and computational work together with a review of relevant previous work in the field. The detailed content is a matter for discussion between the student and their supervisor.
 
Computer Modelling Techniques
This module aims to provide students with a basic knowledge and understanding of the main stream computer modelling techniques used in modern engineering practice, including Finite Element, Finite Difference & Finite Volume methods. You’ll spend two hours in lectures and tutorials each week when studying this module.
 
Optional:

Group 1 - Students must take a minimum of 30 and a maximum of 70 credits from this group. 

Group Design Project
This project involves 3 or 4 students working as a team to design a product from initial concept to fully engineered drawings. Starting from a design brief prepared by the supervisor, the group will be required to devise and evaluate alternative design concepts, undertake the detailed engineering analysis and mechanical design, select suitable materials and methods of manufacture and assess costs and the marketability of the product. You’ll spend one hour in lectures, one hour in tutorials and one hour in tutorials each week when studying this module.
 
Energy Efficiency for Sustainability 2
This module provides students with an awareness of the use of energy and the environmental impact of its use. It will give students an understanding of the key principles of engineering science that can be used to analyse energy systems and the ability to apply them. It will also provide students with knowledge of the technology and techniques that may be used to make energy systems more sustainable through energy conservation. You’ll spend three hours in lectures each week when studying this module.
 
Control and Instrumentation
This module covers the basic techniques for the analysis and development of simple control systems with an emphasis on their application to mechanical and process systems. The module covers theoretical methods and hardware considerations in the analysis and design of open-loop and closed-loop systems. You’ll spend two hours in lectures each week when studying this module.
 
Advanced Dynamics of Machines
This module covers advanced concepts and analytical techniques used to analyse the dynamics of mechanical systems. You will develop understanding, familiarity and knowledge of the analysis techniques required to describe the dynamical and vibration behaviour of mechanical systems moving in 2 and 3-dimensions. You’ll spend two hours in lectures each week when studying this module.
 
Heat Transfer
This is an advanced module covering heat transfer theory. The module covers in more detail the mechanisms of heat transfer and provides potential solutions to practical applications. Several methods of solving problems of heat transfer are outlined and examples from industry and research are used to underline the usefulness of the techniques. You’ll spend two hours in lectures each week when studying this module.
 
Stress Analysis Techniques
This is an advanced module dealing with experimental, analytical and numerical methods for determining stresses and deformations in complex engineering components. Some of the topics covered include: membrane stresses; Beams on elastic foundations; Bending of flat plates; and experimental stress analysis methods. You’ll spend two hours in lectures each week when studying this module.
 
Structural Vibration 2
This module aims to develop understanding, familiarity and knowledge of the analysis techniques required for describing the vibration behaviour of linear structures under arbitrary deterministic excitation. You’ll spend two hours in lectures each week when studying this module.
 
Computer Aided Engineering
This module will enable you to create, display and analyse complex forms and assemblies. Various elements of CAE will be covered including, solid & surface modelling, rendering and analysis. Review of the CAE software and industry. You’ll spend three hours in practicals each week when studying this module.
 
 

The modules we offer are inspired by the research interests of our staff and as a result may change for reasons of, for example, research developments or legislation changes. The above list is a sample of typical modules we offer, not a definitive list.

 
 

Careers

Alongside an accredited engineering degree, you will have a broad knowledge of engineering science and engineering design - the essential skills to work in industry as a mechanical engineer. You will have developed skills in problem solving through group and individual project work and have an appreciation of the business environment in which engineers work. If you took one of the MEng streams you will have an enhanced specialism and be well equipped to work as a mechanical engineer in the area you have specialised in.

Professional recognition

Engineering Council accredited degree

This degree has been accredited by the Institution of Mechanical Engineers and the Institution of Engineering Designers under licence from the UK regulator, the Engineering Council. Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Average starting salary and career progression

In 2014, 89% of first-degree graduates in mechanical engineering who were available for employment had secured work or further study within six months of graduation. The average starting salary was £27,313 with the highest being £45,000.*

* Known destinations of full-time home and EU first-degree graduates, 2013/14. Salaries are calculated based on those in full-time paid employment within the UK.

Careers support and advice

Studying for a degree at The University of Nottingham will provide you with the type of skills and experiences that will prove invaluable in any career, whichever direction you decide to take. Throughout your time with us, our Careers and Employability Service can work with you to improve your employability skills even further; assisting with job or course applications, searching for appropriate work experience placements and hosting events to bring you closer to a wide range of prospective employers.

Have a look at our careers page for an overview of all the employability support and opportunities that we provide to current students.  

The University of Nottingham is the best university in the UK for graduate employment, according to the 2017 The Times and The Sunday Times Good University Guide.

the-140px

 
 

Fees and funding

Scholarships and bursaries

The University of Nottingham offers a wide range of bursaries and scholarships. These funds can provide you with an additional source of non-repayable financial help. For up to date information regarding tuition fees, visit our fees and finance pages.

Home students*

Over one third of our UK students receive our means-tested core bursary, worth up to £2,000 a year. Full details can be found on our financial support pages.

* A 'home' student is one who meets certain UK residence criteria. These are the same criteria as apply to eligibility for home funding from Student Finance.

International/EU students

Our International Baccalaureate Diploma Excellence Scholarship is available for select students paying overseas fees who achieve 40 points or above in the International Baccalaureate Diploma. We also offer a range of High Achiever Prizes for students from selected countries, schools and colleges to help with the cost of tuition fees. Find out more about scholarships, fees and finance for international students.

 
 
 

Key Information Sets (KIS)

Key Information Sets (KIS)

KIS is an initiative that the government has introduced to allow you to compare different courses and universities.

 

How to use the data

Disclaimer
This online prospectus has been drafted in advance of the academic year to which it applies. Every effort has been made to ensure that the information is accurate at the time of publishing, but changes (for example to course content) are likely to occur given the interval between publishing and commencement of the course. It is therefore very important to check this website for any updates before you apply for the course where there has been an interval between you reading this website and applying.

Imagine...

tailoring your final year to fit your areas of interest
+44 (0)115 951 5559 Make an enquiry

Contact

Engineering Student Support Centre 
guycowdry

 

Video

 

shawnjackson

Video 

 

 

 

Student Recruitment Enquiries Centre

The University of Nottingham
King's Meadow Campus
Lenton Lane
Nottingham, NG7 2NR

t: +44 (0) 115 951 5559
w: Frequently asked questions
Make an enquiry