Course overview

Our MSc Chemical Engineering programme provides extra training companies expect from the next generation of chemical engineers, producing employable graduates with the potential to be future leaders of industry.

You will have an engineering first degree such as environmental or chemical engineering. Based on the modules selected, you will gain experience in areas including:

  • chemical and petroleum processing
  • energy efficiency
  • carbon capture
  • water treatment

The course offers you access to an accredited masters level degree, which is an educational requirement for Chartered Engineer status.

Why choose this course?


in The Guardian University Guide 2023 for Chemical and Environmental Engineering

The Guardian University Guide 2023


in the Complete University Guide for Chemical and Environmental Engineering

Complete University Guide 2024


highest in the UK for female engineering graduate earnings, five years after graduation.

Top 10

in the UK for Chemical and Environmental Engineering

The Times and Sunday Times Good University Guide


most targeted university by top employers in the UK, and have been in the top 10 since 2013

Course content

The course follows a modular structure, with students completing 180 credits over a 12-month period. Students will complete:

  • 70 credits of core modules;
  • 20 credits of optional modules;
  • 30 credit development project providing skills in advanced design practice;
  • 60 credit summer project which develops skills in research.

The course utilises an integrated educational approach in which lectures, example classes, laboratories and information technology form key elements.

We provide English-language support from the Centre for English Language Education (CELE), including: in-class support, a technical writing course designed specifically to support our summer project, and one-to-one English tuition on request.  CELE are accredited by the British Council for the teaching of English in the UK.


Core modules

Accelerated Design Training (year-long) 30 credits

Students undertaking this module will complete a group design project with a large individual component. The module is student-lead under the guidance of a group of academics.

Method and Frequency of Class:

Activity Number of Weeks Number of sessions Duration of a session
Computing 23 weeks 1 week 1 hour
Lecture 23 weeks 1 week 2 hours
Workshop 23 weeks 1 week 4 hours
Workshop 23 weeks 1 week 4 hours

Activities may take place every teaching week of the Semester or only in specified weeks. It is usually specified above if an activity only takes place in some weeks of a Semester.

Method of Assessment:

Assessment Type Weight Requirements
Coursework 1 30.00 A group conceptual design task consisting of: basis of design, a minimum of 3 PFDs for different process configurations and a 3 page report outlining the comparative performance of each configuration. Due in November.
Viva voce    
Coursework 2 70.00 Detailed group design task consisting of 10 separate components. Due in April.
Advanced Rheology and Materials (autumn) 10 credits

This module will introduce students to the flow properties of complex fluids. It will cover rheological models, outline characterisation techniques and explore selected applications.

Method and Frequency of Class:

Activity Number of Weeks Number of sessions Duration of a session
Lecture 11 weeks 1 week 2 hours
Lecture 12 weeks 1 week 1 hour

Case study supervisions are carried out in groups of 3-5 students and are intended to support the research into the allocated case study into an industrial application of rheology and/or materials.  Case study presentations take place in Week 12.

Method of Assessment: one exam (100%).

Food Processing (autumn) 10 credits

The aims of this module are to:

  • familiarise students with the complex food matrices, their formulation, and performance.
  • provide a level of understanding on a range of food process technologies to enable them to design process methodologies and comprehend current problems and their potential solutions.

Method and Frequency of Class:

Activity Number of Weeks Number of sessions Duration of a session
Lecture   1 week 2 hours
Tutorial   1 week 1 hour

Method of Assessment: one 2-hour exam (100%) 

Renewable Energy from Wastes (autumn) 10 credits

This module will focus on renewable energy from different waste streams. You will examine the potential of various waste streams in industry, domestic sources, and agriculture, as well as the different combustion technologies available. There will be a strong international focus, particularly on small/medium-scale renewable energy schemes in developing countries. The module will also have dedicated socio-cultural, socio-economic, policy and guidance and techno-economic seminars to introduce you to the interdisciplinary nature of the subject.

Research Planning (spring) 10 credits

The module develops the skills required to design, plan, implement and manage a research project.

Students will be given instruction and practice in:

  • problem definition
  • collection and synthesis of information from a range of traditional and electronic sources
  • critical review of information
  • definition of scope, aims and objectives
  • development of a project plan and schedule
  • management of project progress

Particular emphasis of the module is towards quality control and quality assurance and how these underpin measurement activities. The use of statistics for the assessment of data quality in measurement is also emphasised. Students will also develop their writing and practical skills through exercises and coursework.

Method and Frequency of Class:

Activity Number of Weeks Number of sessions Duration of a session
Lecture 12 weeks 1 week 2 hours
Lecture 12 weeks 1 week 1 hour
Practicum 12 weeks 1 week 2 hours

The module will comprise a series of lectures, tutorials and practicals. Students will undertake, under supervision, develop an appreciation and an ability plan and evaluate the requirements for a research project. Directed study to include the preparation of a research plan, individual presentation and a laboratory report.

Method of Assessment:

Assessment Type Weight Requirements
Coursework 1 70.00 3,000 word Laboratory Report
Coursework 2 30.00 1,000 word Critical Review
Multiphase Systems (spring) 10 credits

This module will identify the industrial occurrence of the simultaneous flow of more than one phase and highlight the implications for design. It will establish the principles of flow and heat transfer in gas/liquid systems and the principles of design methods.

Method and Frequency of Class:

Activity Number of Weeks Number of sessions Duration of a session
Lecture 12 weeks 1 week 1 hour
Lecture 12 weeks 1 week 2 hours

 Method of Assessment:

Assessment Type Weight Requirements
Coursework 1 30.00  
Exam 1 70.00 2 hour exam
Advanced Reaction Engineering

The intent of this module is to help the student master advanced concepts in chemical reaction engineering. You’ll study topics such as: advanced reactor design; chemical reaction mechanisms and rate theories, transport effects in reactive systems, and rate expressions for complex and heterogeneous catalytic reaction system. You’ll spend three hours in lectures per week.

Advanced Computational Methods

The module is designed to give you experience of advanced software applications in chemical engineering, and their potential application to research projects. You will learn how to use advanced features of HYSYS, including:

  • the optimiser for (a) a two-stage compressor (b) an economic assessment of a refrigeration process
  • the dynamics package to simulate (a) fluid flow in tanks in series (b) the control of a separator drum

You’ll spend three hours per week in computing sessions.

MSc Project (Summer) 60 credits

In this module a student will be assigned to an individual supervisor who will be a staff member in the Department of Chemical and Environmental Engineering. The student will carry out a practical or theoretical project chosen from the current interests of the staff member concerned.

The student will be expected to conduct a literature survey, undertake practical or theoretical work and write a dissertation on this work.

The module aims to give experience of completing a major investigation within the topic area of their MSc course, including planning the work to meet a final deadline and reporting on the work both in a structured written report and by an informal oral presentation.

Assessment method

Assessment Type Weight Requirements
Dissertation 80.00 Final Thesis (100 pages maximum)
Oral 10.00 Bench Inspection
Report 10.00 Interim Report

Optional modules

Biochemical Engineering (autumn)

This module aims to introduce to students and build fundamental knowledge and skills in the utilisation of biological systems in bio-manufacturing and bioconversion. Students will learn basic biological science applied to the exploitation of living systems and their components. Fundamentals of bioprocess safety will be developed. You'll spend three hours in practical sessions each week studying for this module.

Water Treatment (autumn)

This module will introduce you to a range of knowledge and skills applicable to water and wastewater treatment. You'll gain an understanding in water availability, sources of pollution and the legislative framework for water quality from an EU perspective.

Municipal water and wastewater treatment processes will be covered, focusing on key unit processes including sedimentation, filtration and disinfection. You’ll spend three hours per week studying for this module. Teaching is also complemented by site visits.

Geoenergy Engineering (autumn)
Advanced Biochemical (spring)
Water Treatment Engineering 10 credits

This module will concentrate on water treatment technologies covering those applicable to both the treatment of wastewater and the treatment of water for potable (drinking water) use. The first part of the module will review current practice and scientific principles in water treatment.

Case Studies across the water industry will be utilised to demonstrate problems and potential solutions and gain an understanding of design considerations and operation of water treatment processes. You’ll study emerging issues in water treatment and how developing technologies are addressing them. Guest speakers from industry and two site visits will support the module delivery. You’ll spend three hours in lectures per week.

Process Risk Benefit Analysis (spring) 10 credits

The module will explore decision making in the presence of uncertainty. Risks of particular interest are those associated with large engineering projects such as the development of innovative new products and processes. The module will present and interpret some of the frameworks helpful for balancing risks and benefits in situations that typically involve:

  • human safety
  • potential environmental effects
  • large financial and technological uncertainties

Case studies will be used to illustrate key points and these will centre on the use and recovery of plastics, metals, industrial minerals and energy. You’ll spend three hours in tutorials per week.


Activity Number of Weeks Number of sessions Duration of a session
Tutorial 12 weeks 1 week 3 hours

Assessment method

Assessment Type Weight Requirements
Coursework 1 20.00 5 page report
Coursework 2 20.00 10 minute presentation with Q and A
Coursework 3 30.00 25 page business plan
Coursework 4 15.00 10 minute presentation with Q and A
Coursework 5 15.00 3 page report
The above is a sample of the typical modules we offer but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. Modules (including methods of assessment) may change or be updated, or modules may be cancelled, over the duration of the course due to a number of reasons such as curriculum developments or staffing changes. Please refer to the module catalogue for information on available modules. This content was last updated on Tuesday 18 July 2023.

Learning and assessment

How you will learn

  • Lectures
  • Seminars
  • Lab sessions
  • Group study
  • Practical classes
  • Self-study
  • Independent study
  • Tutorials

How you will be assessed

  • Coursework
  • Group coursework
  • Examinations
  • Presentation
  • Research project

You will be assessed with a combination of methods, regarding to the module learning outcomes and activities. You must pass each module with at least 50% to progress.

Contact time and study hours

On average, you will have around 30 contact hours a week. This include lectures, practicals, meeting with project supervisors and personal tutors. Combined with coursework and self-study, you may spend over 50 hours a week on your studies. Class sizes depends on the nature of the module (e.g., compulsory or optional) and can be between 50-100.

Entry requirements

All candidates are considered on an individual basis and we accept a broad range of qualifications. The entrance requirements below apply to 2024 entry.

Undergraduate degree2:1 in a relevant engineering degree.
Work experience

Applicants who do not meet the entry criteria, but have significant work industry experience may be accepted on to the programme.


Our step-by-step guide covers everything you need to know about applying.

How to apply


Qualification MSc
Home / UK £11,850
International £28,600

Additional information for international students

If you are a student from the EU, EEA or Switzerland, you may be asked to complete a fee status questionnaire and your answers will be assessed using guidance issued by the UK Council for International Student Affairs (UKCISA) .

These fees are for full-time study. If you are studying part-time, you will be charged a proportion of this fee each year (subject to inflation).

Additional costs

All students will need at least one device to approve security access requests via Multi-Factor Authentication (MFA). We also recommend students have a suitable laptop to work both on and off-campus. For more information, please check the equipment advice.

As a student on this course, you could factor some additional costs into your budget, alongside your tuition fees and living expenses.

You should be able to access most of the books you’ll need through our libraries, though you may wish to purchase your own copies or more specific titles.


There are many ways to fund your postgraduate course, from scholarships to government loans.

We also offer a range of international masters scholarships for high-achieving international scholars who can put their Nottingham degree to great use in their careers.

Check our guide to find out more about funding your postgraduate degree.

Postgraduate funding


We offer individual careers support for all postgraduate students.

Expert staff can help you research career options and job vacancies, build your CV or résumé, develop your interview skills and meet employers.

Each year 1,100 employers advertise graduate jobs and internships through our online vacancy service. We host regular careers fairs, including specialist fairs for different sectors.

International students who complete an eligible degree programme in the UK on a student visa can apply to stay and work in the UK after their course under the Graduate immigration route. Eligible courses at the University of Nottingham include bachelors, masters and research degrees, and PGCE courses.

Graduate destinations

Our graduates have gained top jobs with major companies. This course equips students with an understanding of existing and emerging technologies, advanced design skills and strong skills in research, problem solving and project management.

Students have found jobs in a range of industries, including:

  • oil and gas
  • petrochemicals
  • food
  • environmental protection
  • nanotechnology
  • consultancy and management

Career progression

100% of postgraduates from the School of Chemical Engineering secured graduate level employment or further study within 15 months of graduation. The average annual salary for these graduates was £34,125.*

*HESA Graduate Outcomes 2019/20 data published in 2022. The Graduate Outcomes % is derived using The Guardian University Guide methodology. The average annual salary is based on data from graduates who completed a full-time postgraduate degree with home fee status and are working full-time within the UK.

Institution of Chemical Engineers (IChemE)

This course is accredited by the IChemE (Institution of Chemical Engineers)

Institute of Materials, Minerals and Mining (IOM3)

This course is accredited by the IOM3 (Institute of Materials, Minerals and Mining).

We have a dedicated staff in the department to work with the Careers and Employability and Industrial Placements Teams, helping support our students to find summer and graduate jobs.

Two masters graduates proudly holding their certificates
" "The people and sense of community and collegiality make this department a special place to study and work together. We have a fantastic diversity in our students and staff and an amazing breadth in future destinations and skills from energy to food and everywhere in between" "
Prof Chris Dodds, Head of Department

Related courses

This content was last updated on Tuesday 18 July 2023. Every effort has been made to ensure that this information is accurate, but changes are likely to occur given the interval between the date of publishing and course start date. It is therefore very important to check this website for any updates before you apply.