Course overview

This unique interdisciplinary course combines aspects of psychology, mathematics and computer science. It uses computational models and artificial intelligence to further the understanding of the brain.

You will learn how:

  • the brain is believed to work on the cellular, network and systems level
  • to develop mathematical models of brain function and use them in simulations
  • cognitive phenomena relate to brain activity
  • current AI algorithms are based on neuroscience findings
  • a range of experimental approaches are used to measure and analyse brain function.

There will be particular focus on how:

  • memories are stored and organised in the brain
  • networks of neurons perform computations
  • visual illusions find their origins in neural circuits.

Our research covers many aspects of computational study on the brain, from the changes at a single synapse through to the behaviour of large populations.

Why choose this course?

Top 10

The School of Psychology is ranked in the top 10 in the UK for research power

Research Excellence Framework 2021

More than £1 million

annual research income

from research councils, the EU, Government, charities and companies.

Research project

in a wide range of fascinating topics


combining aspects of psychology, mathematics and computer science

Gain experience

of applying a variety of mathematical modelling approaches

Course content

Emphasis will be on the direct application of the theoretical foundations. You will learn the relevant neuroscience and computing knowledge as the course progresses.


Machine Learning in Science – Part 1 20 credits

This module will provide an introduction to the main concepts and methods of machine learning. It introduces the basics of supervised, unsupervised and reinforcement learning as applied to regression, classification, density estimation, data generation, clustering and optimal control. It will be taught via two sessions per week through a combination of fundamental concepts and hands-on applications.

Computational Cognitive Psychology

The aim of this module is to teach you cognitive psychology but also how cognition can be understood in computational terms, simulation and how it compares to AI approaches.

Content includes:

  • cognitive psychology
  • computational approaches
  • connectionist networks
  • deep nets for vision audition and language
  • memory networks
Neural Computation

The aim of this module is to teach you how neural processes can be understood in computational terms and how they can be analysed using mathematical and computational methods.

Topics included:

  • biophysical and reduced models of neurons
  • models of networks (eg Hopfield networks, ring-attractors and rate networks)
  • models of synaptic plasticity and memory
  • perceptrons
  • unsupervised learning
  • neural coding
  • visual system
  • model fitting
Research project

In a typical research project, you will either:

(a) develop an experimental design, prepare stimuli, and to run a study in a small group of subjects, with technical support provided depending on the complexity of the measurement methods, or

(b) evaluate an existing set of, for example, fMRI, MEG, EEG or TMS data and interpret the results

Practical Biomedical Modelling

This module involves the application of mathematical modelling to practical problems in biology and medicine, typical of those that mathematicians and systems biologists encounter in academia and industry.

Specific projects are tackled through workshops and group activities. You will gain experience in applying a variety of mathematical modelling approaches to a range of biomedical problems.

Examples include:

  • modelling cell signalling pathways using Ordinary Differential Equations
  • fitting models to data
  • modelling spatial patterning using Partial Differential Equations
  • modelling biological tissues using individual-based models
  • modelling tissue growth, including cancer.

The course will include training in report writing and giving presentations.

Optional modules

Computer Vision 20 credits

You will examine current techniques for the extraction of useful information about a physical situation from individual and sets of images. You will learn a range of methods and applications, with particular emphasis being placed on the detection and identification of objects, image segmentation, pose estimation, recovery of three-dimensional shape and analysis of motion. These problems will be approached with both traditional and modern computer vision approaches, including deep learning.

Introduction to Practical Quantum Computing 10 credits

The purpose of this module is to provide an introduction to quantum computing with an emphasis on being able to run quantum circuits on existing and near-term quantum computers. It will introduce essential elementary concepts from quantum mechanics and quantum information, as well as exploring how quantum computers may be utilised in the context of machine learning.

It will introduce the language of quantum computing – qubits, unitary quantum gates, and quantum circuits – and will consider how quantum parallelism may provide an advantage over existing numerical methods. It will additionally cover the use of basic quantum programming languages with the goal of running simple quantum circuits on simulated and real quantum computers. The module will be accessible to all students of the MLiS MSc irrespective of whether they have any background in quantum mechanics.

Advanced Research Methods

The module provides an insight into some more advanced or specialised techniques of data collection, organisation and analysis in psychological research (eg eye-tracking, EEG, fMRI, fNIRS, systematic reviews). 

Machine Learning in Science – Part 2 20 credits

This module will cover more advanced topics following from Machine Learning in Science Part 1, specifically the concepts and methods of modern deep learning. Topics include deep neural networks, CNNs, RNNs, GANs, LLMs, autoencoders, transfer learning, reinforcement learning, interpretable machine learning and Markov decision processes, cleaning data and handling large data sets The main project for the module is the self-driving PiCar, as seen in this video.

Professional Skills for Psychology

You will cover general research skills and personal development skills. The module includes a number of workshops including presentation and writing skills, careers, understanding the wider context of research, consultancy, and practical and ethical issues, along with appropriate Graduate School courses.

Data Analysis for Neuroimaging

Experience a brain imaging session at our on-campus MRI centre. You will then analyse one of the data sets in further lab classes. 

You will be introduced to some of the standard tools used across many labs (including FSL, the FMRIB Software Library from Oxford).

Programming 20 credits

This module will give you a comprehensive overview of the principles of programming, including procedural logic, variables, flow control, input and output and the analysis and design of programs. Instruction will be provided in an object-oriented programming language.

Social and Developmental Psychology 20 credits

Examine theories and experimental studies of social processes and human development.

Topics relating to social processes will include:

  • social cognition and social thinking
  • conformity and obedience
  • intergroup behaviour
  • theories of attraction and relationships
  • prosocial behaviour and intrinsic motivation
  • self-determination

Human development topics are also explored in depth such as the:

  • development of phonology
  • importance of social referencing in early language acquisition
  • atypical socio-cognitive development in people with autism


Neuroscience and Behaviour 20 credits

This module will cover issues in neuroscience and behaviour that are particularly relevant to understanding the biological bases of psychological functions.

Among the topics to be covered are psychopharmacology, psychobiological explanations of mental disorders, dementia, sexual development and behaviour, and methods of studying neuropsychological processes.

You will also examine the effects of brain damage on mental functioning including amnesias, agnosias, and aphasias, among other topics.


The above is a sample of the typical modules we offer but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. Modules (including methods of assessment) may change or be updated, or modules may be cancelled, over the duration of the course due to a number of reasons such as curriculum developments or staffing changes. Please refer to the module catalogue for information on available modules. This content was last updated on Tuesday 28 May 2024.

Due to timetabling availability, there may be restrictions on some module combinations.

Learning and assessment

How you will learn

  • Lectures
  • Seminars
  • Project work

Gain a hands-on experience in computational neuroscience research through a blend of traditional modules, individual and group projects.

Teaching is provided by academic staff within the relevant School.

You will be taught in classes of around 20 students.

How you will be assessed

  • Exams
  • Coursework
  • Project work

Your final degree result will be calculated from the taught module marks and the project mark. 

Contact time and study hours

The course is full-time and will require you to be present on most days of the week.

Entry requirements

All candidates are considered on an individual basis and we accept a broad range of qualifications. The entrance requirements below apply to 2025 entry.

Undergraduate degree2:1 (or international equivalent). For quantitatively minded students with a background in psychology, neuroscience, or biosciences as well as those with training in physics, engineering, mathematics, or computer science; no specific biology or psychology knowledge required.
Work experience

This course requires strong mathematical and programming skills. In their final two years of study, applicants must have achieved a 2.1 (60%) in 2 module(s) covering at least two of the following subjects: mathematics, statistics, physics, data analysis, computer science. If such skills were gained independently, evidence should be provided.
In exceptional cases a 2:2 degree (or international equivalent) may be considered provided the applicant has at least one year of relevant work experience or another supporting factor.


Our step-by-step guide covers everything you need to know about applying.

How to apply


Qualification MSc
Home / UK £12,750
International £30,750

Additional information for international students

If you are a student from the EU, EEA or Switzerland, you may be asked to complete a fee status questionnaire and your answers will be assessed using guidance issued by the UK Council for International Student Affairs (UKCISA) .

These fees are for full-time study. If you are studying part-time, you will be charged a proportion of this fee each year (subject to inflation).

Additional costs

All students will need at least one device to approve security access requests via Multi-Factor Authentication (MFA). We also recommend students have a suitable laptop to work both on and off-campus. For more information, please check the equipment advice.

We do not anticipate any extra significant costs, alongside your tuition fees and living expenses. You should be able to access most of the books you’ll need through our libraries, though you may wish to purchase your own copies which you would need to factor into your budget. Personal laptops are not compulsory as we have computer labs that are open 24 hours a day but you may want to consider one if you wish to work at home.

Due to our commitment to sustainability, we don’t print lecture notes. You are welcome to buy print credits if you wish.


There are many ways to fund your postgraduate course, from scholarships to government loans.

We also offer a range of international masters scholarships for high-achieving international scholars who can put their Nottingham degree to great use in their careers.

Check our guide to find out more about funding your postgraduate degree.

Postgraduate funding


We offer individual careers support for all postgraduate students.

Expert staff can help you research career options and job vacancies, build your CV or résumé, develop your interview skills and meet employers.

Each year 1,100 employers advertise graduate jobs and internships through our online vacancy service. We host regular careers fairs, including specialist fairs for different sectors.

International students who complete an eligible degree programme in the UK on a student visa can apply to stay and work in the UK after their course under the Graduate immigration route. Eligible courses at the University of Nottingham include bachelors, masters and research degrees, and PGCE courses.

Graduate destinations

This course provides an ideal preparation for a PhD in computational neuroscience, psychology or artificial intelligence.

Those who take up a postgraduate research opportunity with us will receive support in terms of regular contact with supervisors and specific training. You will also benefit from dedicated advice from our Careers and Employability Service.

Other careers include:

  • biomedical modelling
  • artificial intelligence
  • data science
  • brain imaging

Career progression

78.9% of postgraduate taught students from the School of Psychology secured graduate level employment or further graduate study within 15 months of graduation. The average annual salary for these graduates was £23,016.*

* HESA Graduate Outcomes 2019/20 data published in 2022. The Graduate Outcomes % is derived using The Guardian University Guide methodology. The average annual salary is based on data from graduates who completed a full-time postgraduate degree with home fee status and are working full-time within the UK.

Two masters graduates proudly holding their certificates
" The study of the brain as a computational device has recently been revolutionised by advances in AI and neuroscience. This course shows how recent insights from psychology, maths and artificial intelligence are being combined to build a computational understanding of the brain. If you are interested in how humans think, and how we can harness that power in computers, this is the course for you! "
Mark van Rossum, programme director. Mark directed the UK's first Doctoral Training Centre, has written over 70 papers, and has supervised over 20 PhD students.

Related courses

This content was last updated on Tuesday 28 May 2024. Every effort has been made to ensure that this information is accurate, but changes are likely to occur given the interval between the date of publishing and course start date. It is therefore very important to check this website for any updates before you apply.