Triangle

Course overview

The control and conversion of electric power using solid-state techniques is now commonplace in both domestic and industrial environments. A recent estimate suggested that over 40% of all electric power generated passes through silicon before reaching its final destination.

A knowledge and understanding of the diverse disciplines encompassed by power electronics - devices, converters, control theory and motor drive systems - is therefore essential to all power engineers.

This course aims to provide a specialist education in power electronics and drives techniques, covering key fundamental principles along with modern applications and current practices.

Key facts

  • The Department of Electrical and Electronic Engineering at Nottingham has long been at the forefront of research and teaching in the area of power electronics and drives.
  • This course is accredited with the Institution of Engineering and Technology (IET) to meet the further learning requirements of a Chartered Engineer.

Why choose this course?

Top 15

in the UK for Electrical and Electronic Engineering

Guardian University Guide 2022

Top 100

internationally for Electrical and Electronic Engineering

QS World University Rankings by Subject 2020

One of the largest

research groups in Power Electronics, Machines and Control in the world

Modules

Core modules

Advanced Control System Design (autumn) 20 credits

This module introduces the state-space representation of physical systems and the control design of multi-input multi-output systems using multivariable control techniques for both continuous and discrete implementation.

The module then covers both the full and reduced observer design for those cases when state variables are not measurable. The module finishes with an overview of optimal control design.

Delivery

Activity Number of Weeks Number of sessions Duration of a session
Lecture 11 weeks 1 week 2 hours

Assessment method

Assessment Type Weight Requirements
Exam 100.00 2 hour exam.
Advanced Power Electronics 20 credits

This module covers a range of advanced power electronic techniques and implementations for a variety of applications, including the design of power electronic converters for real applications. Both component-level design and the impact of non-idealities on modelling and operation are considered.

Method and Frequency of Class:

Activity Number of Weeks Number of sessions Duration of a session
Lecture 11 weeks 2 weeks 2 hours


Method of Assessment:

Assessment Type Contribution Requirements
Coursework 50%

Part 1: weight 25%, 25 hours of student effort; assessment of student ability to demonstrate fundamental acquisition of the module's learning outcomes.

Part 2: weight 25%, 25 hours of student effort; assessment of student ability to demonstrate application of the module's learning outcomes to realistic engineering design and implement tasks.

Exam 50%  
Electrical and Electronic Fundamentals for Masters (autumn) 20 credits

The module expands students lifelong learning skills by developing their proficiency in self- assessment of their knowledge. This will be achieved by asking students to identify gaps in their knowledge in the core areas of electrical and electronic engineering and the development and implementation of an improvement plan.

The problem/project based learning will be used to reinforce the fundamental skills of an electrical and electronic engineer. These problems will be introduced in student led small group seminars where students will discuss the problem and discuss what background knowledge is required and suitable resources. A member of academic staff will aid the students identify appropriate learning material where students find it difficult to do so. As part of the learning experience, students will keep a weekly online log detailing the learning activities undertaken, what they have learnt and the areas they still need to develop.

Practical skills, both ICT and laboratory based skills will be developed using both individual and group activities.

To provide formative feedback during this learning period, there will be 4 compulsory on-line tests. Although the mark attained is not used in the calculation of the module mark, failure, without good cause to complete 3 of the 4 tests within the given time window, will result in a zero module mark.

ICT technology plays a key role in modern engineering and this module will introduce typical commercial engineering packages used in their area of interest. The software packages are Matlab, Keysight ADS ( Circuit Simulation), ADS (communication systems simulation), Simulink, PLECS

Experience of these packages will be gained from solving exemplar problems.  Students will be required to show competency in 2 packages. A student may elect to experience more ICT packages but will not be assessed on them.

Method and Frequency of Class:

Activity Number of Weeks Number of sessions Duration of a session
Laboratory 4 weeks 2 week 3 hours
Lecture 1 week 1 week 2 hours
Lecture 1 week 1 week 2 hours
Lecture 2 weeks 3 week 3 hours
Seminar 8 weeks 6 week 1 hour
Un Assign 2 weeks 1 week 3 hours
Un Assign 2 weeks 3 week 3 hours
Un Assign 1 week 8 week 3 hours
Workshop 8 weeks 6 week 2 hours

The formative progress tests will be on-line for completion within a 24 hour period.

Method of Assessment:

Assessment Type Weight Requirements
Formative Examination   2-hour Formative Examination (Required to attend)
Coursework 1 5.00 Initial Assessment/reflection and of additional learning requirements to complete the course.
Coursework 2 20.00 Presentation.
Laboratory Skills 20.00 Online laboratory reports
In-Class Test 1 15.00 Software competency Test Software 1
In-Class Test 2 15.00 Software competency Test Software 2
Online Examination 25.00 1 hour online examination
Power Systems for Aerospace, Marine and Automotive Applications (spring) 20 credits

This module aims to develop an understanding of the design and operation of power systems in aerospace, marine and automotive applications. With the introduction of more electrical technologies in these application areas, the understanding and expected performance of the power system has become a critical platform design issue.

Method and Frequency of Class:

Activity Number of Weeks Number of sessions Duration of a session
Lecture 11 weeks 2 weeks 2 hours
Practicum  10 weeks 1 week 2 hours


Method of Assessment:

Assessment Type Contribution Requirements
Coursework 25%

Part 1: weight 12.5%, 12.5 hours of student effort; assessment of student ability to demonstrate fundamental acquisition of the module's learning outcomes.

Part 2: weight 12.5%, 12.5 hours of student effort; assessment of student ability to demonstrate application of the module's learning outcomes to realistic engineering design and implement tasks.

Exam 75%  
Advanced AC Drives with Project (spring) 20 credits

This module addresses the control of AC drives and consists of a lecture component (10 credits) and a design and assessment project (10 credits)

The lecture component covers vector controlled induction motor drives and permanent magnet motor drives. Vector control is covered in depth covering the concept of space vectors, dq representation of 3-phase machines, dynamic equation structure and the concepts of direct and indirect flux orientation. Implementation of Indirect Vector Control, including current flux and speed control is covered in some detail and includes the effect of incorrect parameters.

Both AC and Brushless DC permanent magnet motor drives are introduced. The vector control concepts learned for induction machines are applied to AC PM machines. The concept of salient and non-salient AC PM machines are covered leading to the vector control using maximum torque per amp control strategies. Finally the field weakening control of both non-salient and salient PM machines are considered.

The project component is a design and simulation exercise using MATLAB/Simulink. The student is required to design an indirect vector controlled induction motor drive, implement the design in Simulink, and undertake evaluative tests covering current and speed loop performance, including field weakening for high speed. The exercise covers investigating the effects of parameter variation and designing engineered solutions to reducing the sensitivity.

Delivery

Activity Number of Weeks Number of sessions Duration of a session
Lecture 12 weeks 1 week 2 hours

Assessment method

Assessment Type Weight Requirements
Coursework 50.00 50 hours of student work
Exam 50.00  
Research Project Organisation and Design (spring) 10 credits

A project-oriented module involving a review of publications and views on a topic allied to the chosen specialist subject. The module will also involve organisation and design of the main project. Skills will be acquired through workshops and seminars that will include:

  • Further programming in MATLAB and /or MSExcel Macros
  • Project planning and use of Microsoft Project
  • Measurement and error analysis
  • Development of laboratory skills including safety & risk assessment

Students will select a further set of specialist seminars from, e.g.:

  • Meshing for computational engineering applications
  • Modelling using CAE packages
  • Use of CES Selector software
  • Specific laboratory familiarisation
  • Use of MSVisio software for process flow
  • Use of HYSYS process modelling software
  • Use of PSpice to simulate analogue and digital circuits

The specialist seminars will be organised within the individual MSc courses.

Delivery

Three hour seminars in 12 weeks.

Assessment method

Assessment Type Weight Requirements
Coursework 1 40.00 2,000 word literature review on a topic relevant to MSc programme.
Coursework 2   Formative health and safety risk assessment
Coursework 3 60.00 2,000 word max planning report; topics to be specific to individual MSc courses and specialist training
MSc Project (Summer) 60 credits

In this module a student will be assigned to an individual supervisor who will be a staff member in the Department of Electrical and Electronic Engineering. The student will carry out a practical or theoretical project chosen from the current interests of the staff member concerned.

The student will be expected to conduct a literature survey, undertake practical or theoretical work and write a dissertation on this work.

The module aims to give experience of completing a major investigation within the topic area of their MSc course, including planning the work to meet a final deadline and reporting on the work both in a structured written report and by an informal oral presentation.

Assessment method

Assessment Type Weight Requirements
Dissertation 80.00 Final Thesis (100 pages maximum)
Oral 10.00 Bench Inspection
Report 10.00 Interim Report

Optional modules

Power Networks (spring) 10 credits

This module provides students with an understanding of power system apparatus and their behaviour under normal and fault conditions. This module covers:

  • concept and analysis of load flow
  • voltage/current symmetrical components
  • computation of fault currents
  • economic optimisation
  • power-system control and stability
  • power system protection

Delivery

Activity Number of Weeks Number of sessions Duration of a session
Lecture 11 weeks 1 week 2 hours
Practicum 11 weeks 1 week 1 hour

Assessment method

Assessment Type Contribution  Requirements
Coursework 25% 25 hours of student time
Exam 75% 2 hour exam
Renewable Generation Technologies (spring) 10 credits

This module covers the analysis and design of renewable and sustainable energy systems. It covers the various types of renewable energy and the resources available.

It uses an understanding of the physical principles of various types of energy resources in order to develop analytical models which can be applied to the design of renewable energy systems, including energy conversion and storage, especially for electrical power generation.

It includes;

  • Wind power: wind probability distributions, wind turbine performance and control, comparison of generator types
  • Hydro and tidal power: resource assessment, turbine types and principles
  • Solar power, including PV cell equivalent circuit, analysis of losses, matching to DC and AC power systems
  • Wave power systems, including wave energy characteristics, types of energy converter
  • Characteristics of synchronous and induction generators
  • Embedded generation; types of generator and operation of RE within the power system
  • Economic and environmental assessment of energy conversion technologies.

Delivery

Activity Number of Weeks Number of sessions Duration of a session
Lecture 12 weeks 1 week 2 hours

 

Assessment method

Assessment Type Contribution  Requirements
Coursework 25% Sustainable energy case study: A written report.
Exam 75% Two Hour Paper. The examination will be based on the whole of the course.
Sensing Systems and Signal Processing (spring) 10 credits

This module covers a selection of topics where information is acquired from sensors and subsequently electronically processed.

Applications include:

  • optical
  • acoustic
  • non-destructive evaluation
  • medical
  • biophotonics

Method and Frequency of Class:

Activity Number of Weeks Number of sessions Duration of a session
Lecture 9 weeks 1 week 2 hours
Practicum 2 weeks 1 week 3 hours


Method of Assessment:

Assessment Type Contribution  Requirements
Coursework 50% Comprised of 3 pieces 
Exam 50%  
The above is a sample of the typical modules we offer but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. Modules (including methods of assessment) may change or be updated, or modules may be cancelled, over the duration of the course due to a number of reasons such as curriculum developments or staffing changes. Please refer to the module catalogue for information on available modules. This content was last updated on Thursday 01 July 2021.

Learning and assessment

How you will learn

  • Independent study
  • Lectures
  • Group study
  • Practical classes
  • Workshops
  • Lab sessions
  • Supervision
  • Tutorials

You will be taught using up to date practices, including the use of electronic resources.

How you will be assessed

  • Coursework
  • Examinations
  • Lab skills
  • In-class test
  • Online exams
  • Dissertation
  • Reports
  • Research project
  • Presentations

The assessment strategy differs between the taught (120 credits) and individual project (60 credits) modules. A typical module contains both written assignment(s) and a year end exam which is mostly weighted as 50%. The individual project module is continuously assessed in the summer period and concludes with submission of a final project report, as well as an oral assessment based upon the practical demonstration of the proposed engineering design/solution. The pass mark for all the modules is 50%. Your final degree classification will be based upon your aggregated achievement from both the taught and the project stages of 180 credits.

Contact time and study hours

You will study a total of 180 credits which consists of 120 taught credits over autumn and spring semesters, with the final 60 credits from a large individual project carried out in the summer semester. Typical class contact time is 4 hours per week for a 20 credit module. There is typically 11 weeks of class teaching in each taught semester. In addition direct contact with academics, students are expected to put in additional self-study time preparing for lectures, tutorials, labs and assignments. As a guide, one credit is equivalent to 10 hours of total combined effort.

Typical class size is approximately 50 students. Teaching for this course usually takes place on Monday to Friday with the exception of Wednesday afternoon when students are involved in extracurricular activities.

Entry requirements

All candidates are considered on an individual basis and we accept a broad range of qualifications. The entrance requirements below apply to 2022 entry.

MSc

Undergraduate degree2:1 or equivalent grade in Electrical Engineering or related discipline. Applicants are expected to have covered modules such as Maths, Electric Circuits, Power Electronics, Power Network/Systems, Control Engineering, Electrical Machines or related key technical modules.

Applying

Our step-by-step guide covers everything you need to know about applying.

How to apply

Fees

UK fees are set in line with the national UKRI maximum fee limit. We expect fees for 2022 entry to be confirmed in August 2021.

Additional information for international students

If you are a student from the EU, EEA or Switzerland, you will pay international tuition fees in most cases. If you are resident in the UK and have 'settled' or 'pre-settled' status under the EU Settlement Scheme, you will be entitled to 'home' fee status.

Irish students will be charged tuition fees at the same rate as UK students. UK nationals living in the EU, EEA and Switzerland will also continue to be eligible for ‘home’ fee status at UK universities until 31 December 2027.

For further guidance, check our information for applicants from the EU.

These fees are for full-time study. If you are studying part-time, you will be charged a proportion of this fee each year (subject to inflation).

Additional costs

As a student on this course, you should factor some additional costs into your budget, alongside your tuition fees and living expenses. Project equipment and components are normally covered by the department, though some students opt to buy some of their own components up to £100.

You should be able to access most of the books you’ll need through our libraries, though you may wish to purchase your own copies or more specific titles which could cost up to £300. Please note that these figures are approximate and subject to change.

Funding

There are many ways to fund your postgraduate course, from scholarships to government loans.

We also offer a range of international masters scholarships for high-achieving international scholars who can put their Nottingham degree to great use in their careers.

Check our guide to find out more about funding your postgraduate degree.

Postgraduate funding

Careers

We offer individual careers support for all postgraduate students.

Expert staff can help you research career options and job vacancies, build your CV or résumé, develop your interview skills and meet employers.

Each year 1,100 employers advertise graduate jobs and internships through our online vacancy service. We host regular careers fairs, including specialist fairs for different sectors.

International students who complete an eligible degree programme in the UK on a student visa can apply to stay and work in the UK after their course under the Graduate immigration route. Eligible courses at the University of Nottingham include bachelors, masters and research degrees, and PGCE courses.

Graduate destinations

Our postgraduates generally progress to exciting roles in design and development with major international companies or government agencies, obtain consultancy posts with leading contract consultant companies or move into successful academic careers.

Career destinations for our graduates in the department of Electrical and Electronic Engineering include:

  • IT business analysts
  • Systems designers
  • Programmers
  • Software development professionals
  • Production technicians
  • Electrical engineers and engineering professionals

Career progression

100% of postgraduates from the Department of Electrical and Electronic Engineering secured work or further study within six months of graduation. The average starting salary was £32,500, with the highest being £40,000.

* Known destinations of full-time home postgraduates who were available for employment, 2016/17. Salaries are calculated based on the median of those in full-time paid employment within the UK.

The Institution of Engineering and Technology (IET)

This course is accredited by the IET (Institution of Engineering and Technology) to meet the further learning requirements of a Chartered Engineer.

Two masters graduates proudly holding their certificates

Related courses

This content was last updated on Thursday 01 July 2021. Every effort has been made to ensure that this information is accurate, but changes are likely to occur given the interval between the date of publishing and course start date. It is therefore very important to check this website for any updates before you apply.