Triangle Skip to content
Exit nav

Course overview

The mechanical engineering including an industrial year degree provides a broad foundation in engineering science and engineering design and the opportunity to develop interpersonal and management skills.

Why choose this course?

  • Ranked 7th in the UK for mechanical engineering in The Guardian University Guide, 2020
  • Get paid experience with a year out in industry
  • Customise your degree to suit your interests with a wide selection of optional modules

Entry requirements

All candidates are considered on an individual basis and we accept a broad range of qualifications. The entrance requirements below apply to 2021 entry.

UK entry requirements
A level offer AAB
Required subjects

Three A levels including maths (grade A) and preferably physics (including a pass in the practical element) excluding General Studies, Critical Thinking, Citizenship Studies, CIE Global Perspectives and Research, CIE Thinking Skills.

IB score 34 (6 in maths at Higher Level or 7 at Standard Level, plus preferably Physics at Higher or Standard Level) excluding Maths Studies. We also accept the following IB Mathematics courses: Mathematics: Analysis and Approaches - 6 at Higher Level or 7 at Standard Level and Mathematics: Applications and Interpretation – 6 at Higher Level only.

Foundation progression options

A foundation year is available for those with BBB grades but not in the required subjects.

Learning and assessment

How you will learn

Teaching methods

  • Group study
  • Independent study
  • Lab sessions
  • Lectures
  • Practical classes
  • Supervision
  • Tutorials
  • Workshops

How you will be assessed

Assessment methods

  • Coursework
  • Dissertation
  • Examinations
  • Group coursework
  • Presentation
  • Research project
  • Practical assessment

Study abroad

There are study abroad options for this course.

Year in industry

The third year of this course is spent in industry. You will receive support in applying for a year-long placement with an appropriate company. During the placement you will significantly enhance your engineering knowledge and skills. You will have regular meetings with your tutor throughout the year and will remain fully registered with the University.

What is it like studying Mechanical, Materials and Manufacturing Engineering at UoN?

Hear what our students have to say about studying Mechanical, Materials and Manufacturing Engineering at UoN.

Modules

The first two years provide a good grounding in the broad fundamentals of mechanical engineering science and engineering design. The science subjects studied include thermodynamics, fluid mechanics, solid mechanics, dynamics and electro-mechanical systems. In design, the emphasis is on project work and in both the first and second years, you will undertake a design, make and test project, which you will manufacture in the department's well-equipped student workshop.

At the end of the second year, you can remain on the BEng course or opt to switch to the four-year MEng degree provided that you have obtained at least 55 percent in the end of year assessment.

Core

Engineering Design and Design Project

This year long module introduces students to basic concepts and practice of design and manufacture with a semester long group and individual project. It includes the following topics:  

  • the process of design supported by practical design activities
  • engineering drawing 
  • solid modelling and drawing generation  
  • machine elements 
  • group Design Project with Integrated Individual Element  
  • machine shop practical training 

Student groups will undertake a different group design project in semester two aligned to their subject stream: Mechanical, Manufacturing Engineering or Product Design and Manufacture

Materials and Manufacturing

This year long module introduces students to the properties of materials, the main failure mechanisms which a designer will be concerned with (e.g overload, fracture, creep, fatigue) and core manufacturing methods used in engineering applications.
It includes the following topics:

  • the role of materials and material properties in the design process
  • the selection and use of materials
  • the basic science underlying material properties and approaches to avoid failure of materials to provide the knowledge with which to design materials with better properties. For each property (or group of properties), a case study of practical design application will be addressed
  • an introduction to manufacturing in the UK 
  • an introduction to high value – low volume and low value – high volume manufacturing processes including: casting, machining, moulding, forming, powder processing, heat treatment, surface finishing and assembly
  • an introduction into additive manufacturing an introduction to manufacturing metrology 
Programming, Professional and Laboratory Skills

This year long module comprises a number of elements to provide you with:

  • professional engineering, information searching, data analysis, health and safety and oral presentations 
  • laboratory skills and development of house style laboratory report
  • writing and understanding of computer programs including, loops, conditional statements, program flow, functions, basic input output, sound processing, image processing, variables, (1/2D) arrays, advanced plotting and simple computer graphics. 
  • the application of computer code to control mechanical devices as part of a group project. 
  • introduction to professional responsibilities of engineers including the fundamental role of sustainability, legal issues, patents, ethics and standards 
Statics and Dynamics

An introductory module covering analysis methods applicable to engineering design including:

  • review of basic mechanics: vectors, units, forces and moments, Newton’s laws
  • static equilibrium: force and moment analysis in design; frictional forces
  • free body diagrams and Pin-jointed structures
  • stress, strain and elasticity
  • multi-axial stress-strain; thin walled vessels under pressure
  • shear stress and torsion of shafts
  • plane stress; Mohr's circle analysis
  • beam bending: shear force and bending moment diagrams
  • second moments of area of cross-sections
  • bending stresses in beams 
  • linear and rotational motion: displacement, velocity and acceleration
  • relationship between angular and linear motion
  • newton's Laws for linear and rotational motion
  • linear and Angular Momentum, including conservation of momentum
  • work, energy and power, including kinetic and potential energy
  • geared systems
  • drive systems, including tangential drives and vehicles
  • load characteristics and steady-state characteristics
  • flywheel design
  • static and dynamic balancing
Thermodynamics and Fluid Mechanics 1

This is an introductory module covering the fundamental concepts and principles of thermofluids and their applications to engineering problems. Topics covered include: 

  • introductory concepts; properties of fluids, equations of state and the perfect gas law 
  • hydrostatics The first and second law of thermodynamics, including heat engines 
  • fluid dynamics: continuity, Euler and Bernoulli equations 
  • processes undergone by closed systems 
  • the steady flow energy equation 
  • momentum flows including linear momentum, friction factors and pipe flows
  • heat transfer
Mathematics for Engineers

This module introduces a range of fundamental elementary mathematical techniques that can be applied to mechanical engineering, manufacturing and product design problems. It includes:

  • the calculus of a single variable, extended to develop techniques used in analysing engineering problems
  • techniques for solving selected first-order and second-order differential equations
  • the algebra of complex numbers to provide a key mathematical tool for analysis of linear mathematical and engineering problems
  • the complexity of solving general (large) systems of equations 
  • advanced differential and integral calculus of one variable
  • first-order ordinary-differential equations
  • algebra of complex numbers
  • matrix algebra and its applications to systems of equations and eigenvalue problems
  • functions and their properties
  • vector spaces and their applications
  • vector calculus
The above is a sample of the typical modules that we offer at the date of publication but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. This prospectus may be updated over the duration of the course, as modules may change due to developments in the curriculum or in the research interests of staff.

Core

Design, Manufacture and Project

This module will introduce design methodology through the entire design cycle from establishing users' needs and generating creative concepts to developing fabricable engineered solutions.

You will develop knowledge of machine elements and mechanical systems and develop enhanced skills in communicating effectively in a team environment and operating machine tools for manufacturing and testing of design.

Dynamics

This module aims to introduce concepts of rigid body dynamics, vibrations and feedback control, and develop the student's ability to analyse these aspects in simplified engineering situations. 

Electromechanical Devices
Engineering Management 1
Materials in Design

This module aims to introduce students to methodologies for materials selection and process selection for design improvement. This module seeks to develop an understanding of the role of materials in the design of a range of components, from consumer goods to large scale structures.

Mathematics and Statistics
Mechanics of Solids

The aim of this module is to introduce more advanced topics in linear elastic solid mechanics, plasticity and failure, introduce relevant analysis methods for this materials behaviour and demonstrate the application of these methods to the design of engineering components. 

Thermodynamics and Fluid Mechanics 2

In this module you will apply concepts and principles of thermofluids to fluid mechanics, thermodynamics and heat transfer situations in simplified applied situations.

The above is a sample of the typical modules that we offer at the date of publication but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. This prospectus may be updated over the duration of the course, as modules may change due to developments in the curriculum or in the research interests of staff.

The third year of this course is spent in industry. You will receive support in applying for a year-long placement with an appropriate company. During the placement you will significantly enhance your engineering knowledge and skills. You will have regular meetings with your tutor throughout the year and will remain fully registered with the University.

A major individual project makes up a third of your studies. This may involve computational and or experimental investigations often related to research activities within the department. You will also study a mix of compulsory and optional modules, the latter allowing you to tailor the course to your interests.

Core

Engineering Management 2
Computer Modelling Techniques

This module aims to provide students with a basic knowledge and understanding of the main stream computer modelling techniques used in modern engineering practice, including Finite Element, Finite Difference and Finite Volume methods.

BEng Individual Project

The project aims to give you experience in the practice of manufacturing engineering at a professional level. It involves the planning, execution and reporting of a programme of work which will normally involve a mixture of experimental, theoretical and computational work together with a review of relevant previous work in the field. The detailed content is a matter for discussion between the student and their supervisor.

Optional

Advanced Dynamics of Machines

This module covers advanced concepts and analytical techniques used to analyse the dynamics of mechanical systems. You will develop understanding, familiarity and knowledge of the analysis techniques required to describe the dynamical and vibration behaviour of mechanical systems moving in 2 and 3 dimensions. 

Stress Analysis Techniques

This is an advanced module dealing with experimental, analytical and numerical methods for determining stresses and deformations in complex engineering components. Some of the topics covered include: membrane stresses; Beams on elastic foundations; Bending of flat plates; and experimental stress analysis methods. 

Delivery

Activity Number of Weeks Number of sessions Duration of a session
Lecture 12 weeks 1 week 4 hours

Assessment method

Assessment Type Weight Requirements
Exam 100.00 One 2 hour exam
Thermofluids

This module introduces the principles of thermodynamics and the thermodynamic concepts relevant to the applications to building environment engineering. Topics covered include: dimensions and units, thermal properties, thermodynamic systems, energy, work and heat transfer processes, perfect gases, steady flow energy equation, 1st law and 2nd law of thermodynamics and basic modes of heat transfer.

Further optional modules within the following subject areas

Aerospace
Automotive
Bioengineering
Design
Human Factors
Materials
Manufacturing
Mechatronics
Sustainability
The above is a sample of the typical modules that we offer at the date of publication but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. This prospectus may be updated over the duration of the course, as modules may change due to developments in the curriculum or in the research interests of staff.

Fees and funding

UK students

£9,250
Per year

International students

Confirmed July 2020*
Keep checking back for more information
*For full details including fees for part-time students and reduced fees during your time studying abroad or on placement (where applicable), see our fees page.

EU tuition fees and funding options for courses starting in 2021/22 have not yet been confirmed by the UK government. For further guidance, check our Brexit information for future students.

Scholarships and bursaries

Scholarships and bursaries

The University of Nottingham offers a wide range of bursaries and scholarships. These funds can provide you with an additional source of non-repayable financial help. For up to date information regarding tuition fees, visit our fees and finance pages.

Faculty-specific funding

In addition to the above, students applying to the Faculty of Engineering may be eligible for faculty-specific or industry scholarships.

Home students*

Over one third of our UK students receive our means-tested core bursary, worth up to £1,000 a year. Full details can be found on our financial support pages.

* A 'home' student is one who meets certain UK residence criteria. These are the same criteria as apply to eligibility for home funding from Student Finance.

International/EU students

We offer a range of Undergraduate Excellence Awards for high-achieving international and EU scholars from countries around the world, who can put their Nottingham degree to great use in their careers. This includes our European Union Undergraduate Excellence Award for EU students and our UK International Undergraduate Excellence Award for international students based in the UK.

These scholarships cover a contribution towards tuition fees in the first year of your course. Candidates must apply for an undergraduate degree course and receive an offer before applying for scholarships. Check the links above for full scholarship details, application deadlines and how to apply.

Careers

Alongside an accredited engineering degree, you will have a broad knowledge of engineering science and engineering design - the essential skills to work in industry as a mechanical engineer. You will have developed skills in problem solving through group and individual project work and have an appreciation of the business environment in which engineers work.

Our graduates work for a diverse range of employment sectors with companies including:

  • Jaguar Land Rover
  • Tata Steel
  • Procter & Gamble
  • Rolls-Royce
  • Ford
  • Network Rail

Average starting salary and career progression

92.3% of first-degree graduates from the Department of Mechanical, Materials and Manufacturing Engineering secured work or further study within six months of graduation – for some of our courses this rate is as high as 100%. The average starting salary was £26,000.

* Known destinations of full-time home undergraduates who were available for employment, 2016/17. Salaries are calculated based on the median of those in full-time paid employment within the UK.

Studying for a degree at the University of Nottingham will provide you with the type of skills and experiences that will prove invaluable in any career, whichever direction you decide to take.

Throughout your time with us, our Careers and Employability Service can work with you to improve your employability skills even further; assisting with job or course applications, searching for appropriate work experience placements and hosting events to bring you closer to a wide range of prospective employers.

Have a look at our careers page for an overview of all the employability support and opportunities that we provide to current students.

The University of Nottingham is consistently named as one of the most targeted universities by Britain’s leading graduate employers (Ranked in the top ten in The Graduate Market in 2013-2020, High Fliers Research).

Institution of Mechanical Engineers (IMechE)

the Institution of Mechanical Engineers (IMechE) and provides you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng).

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UKSPEC).

Dummy placeholder image

Related courses

The University has been awarded Gold for outstanding teaching and learning

Teaching Excellence Framework (TEF) 2017-18

Disclaimer

This online prospectus has been drafted in advance of the academic year to which it applies. Every effort has been made to ensure that the information is accurate at the time of publishing, but changes (for example to course content) are likely to occur given the interval between publishing and commencement of the course. It is therefore very important to check this website for any updates before you apply for the course where there has been an interval between you reading this website and applying.