Triangle Skip to content
Exit nav

Course overview

This course delivers understanding of the art of electrical and electronic engineering and an in-depth study of topics covering modern technology for electrical and electronic engineering. It allows for study of a variety of topics, including

  • Electronic design
  • Communications
  • Software engineering
  • Power generation and distribution
  • Electrical machines
  • Renewable energy systems

Our objective is to help you develop the confidence to work as a professional, at ease with the conventions of the discipline, and ready to tackle any area of research in electrical and electronic engineering.

Key facts

  • Students will gain experience of the type of problems encountered by academic and industrial researchers.
  • This course is suitable for graduates of closely related disciplines who wish to convert to electrical and electronic engineering.
  • This course is accredited by the IET (Institution of Engineering and Technology) to meet the further learning requirements of a Chartered Engineer.

Why choose this course?

2nd

in the UK for Electrical and Electronic Engineering

Top 100

internationally for Electrical and Electronic Engineering

QS World University Rankings by Subject 2020

Tailored to you

With a wide range of modules taught by subject specialists.

Modules

Core modules

Electrical and Electronic Fundamentals for Masters (autumn) 20 credits

The module expands students lifelong learning skills by developing their proficiency in self- assessment of their knowledge. This will be achieved by asking students to identifying gaps in their knowledge in the core areas of electrical and electronic engineering, development and implementation of an improvement plan.

The student self-learning, problem/project based learning will be used to reinforce the fundamental skills of an electrical and electronic engineer. These problems will be introduced in student led small group seminars where students will discuss the problem and discuss what background knowledge is required and suitable resources. A member of academic staff will aid the students identify appropriate learning material where students finds it difficult to do so. As part of the learning experience, students will keep a weekly online log detailing the learning activities undertaken, what they have learnt and the areas they still need to develop.

Practical skills, both ICT and laboratory based skills will be developed using both individual and group activities.

To provide formative feedback during this learning period, there will be 4 compulsory on-line tests. Although the mark attained is not used in the calculation of the module mark, failure, without good cause to complete 3 of the 4 tests within the given time window, will result in a zero module mark.

ICT technology plays a key role in modern engineering and this module will introduce typical commercial engineering packages used in their area of interest. The software packages are Matlab, Keysight ADS ( Circuit Simulation), ADS (communication systems simulation), Simulink, PLECS

Experience of these packages will be gained from solving exemplar problems.  Students will be required to show competency in 2 packages. A student may elect to experience more ICT packages but will not be assessed on them.

Method and Frequency of Class:

Activity Number of Weeks Number of sessions Duration of a session
Laboratory 4 weeks 2 week 3 hours
Lecture 1 week 1 week 2 hours
Lecture 1 week 1 week 2 hours
Lecture 2 weeks 3 week 3 hours
Seminar 8 weeks 6 week 1 hour
Un Assign 2 weeks 1 week 3 hours
Un Assign 2 weeks 3 week 3 hours
Un Assign 1 week 8 week 3 hours
Workshop 8 weeks 6 week 2 hours

The formative progress tests will be on-line for completion within a 24 hour period.

Method of Assessment:

Assessment Type Weight Requirements
Formative Examination   2-hour Formative Examination (Required to attend)
Coursework 1 5.00 Initial Assessment/reflection and of additional learning requirements to complete the course.
Coursework 2 20.00 Presentation.
Laboratory Skills 20.00 Online laboratory reports
In-Class Test 1 15.00 Software competency Test Software 1
In-Class Test 2 15.00 Software competency Test Software 2
Online Examination 25.00 1 hour online examination
Research Project Organisation and Design (spring) 10 credits

A project-oriented module involving a review of publications and views on a topic allied to the chosen specialist subject. The module will also involve organisation and design of the main project. Skills will be acquired through workshops and seminars that will include:

  • Further programming in MATLAB and /or MSExcel Macros
  • Project planning and use of Microsoft Project
  • Measurement and error analysis
  • Development of laboratory skills including safety & risk assessment

Students will select a further set of specialist seminars from, e.g.:

  • Meshing for computational engineering applications
  • Modelling using CAE packages
  • Use of CES Selector software
  • Specific laboratory familiarisation
  • Use of MSVisio software for process flow
  • Use of HYSYS process modelling software
  • Use of PSpice to simulate analogue and digital circuits

The specialist seminars will be organised within the individual MSc courses.

Delivery

Three hour seminars in 12 weeks.

Assessment method

Assessment Type Weight Requirements
Coursework 1 40.00 2,000 word literature review on a topic relevant to MSc programme.
Coursework 2   Formative health and safety risk assessment
Coursework 3 60.00 2,000 word max planning report; topics to be specific to individual MSc courses and specialist training
MSc Project (Summer) 60 credits

In this module a student will be assigned to an individual supervisor who will be a staff member in the Department of Electrical and Electronic Engineering. The student will carry out a practical or theoretical project chosen from the current interests of the staff member concerned.

The student will be expected to conduct a literature survey, undertake practical or theoretical work and write a dissertation on this work.

The module aims to give experience of completing a major investigation within the topic area of their MSc course, including planning the work to meet a final deadline and reporting on the work both in a structured written report and by an informal oral presentation.

Assessment method

Assessment Type Weight Requirements
Dissertation 80.00 Final Thesis (100 pages maximum)
Oral 10.00 Bench Inspection
Report 10.00 Interim Report

Optional modules

Advanced Computational Engineering (autumn) 20 credits

This module covers the development of advanced engineering software projects, spanning a range of application areas.

Generic Topics to be discussed include:

  • Large-scale software management
  • robust design and coding techniques
  • accurate and efficient numerical computing for technological simulations
  • parallel computing techniques applicable to several classes of parallel computer e.g. multicore, distributed and graphics processing unit (GPU) based systems
  • database design and implementation
  • distributed network based computing
  • hardware interfacing

Delivery

Activity Number of Weeks Number of sessions Duration of a session
Lecture 11 weeks 1 week 2 hours

Assessment method

Assessment Type Weight Requirements
Coursework 1 25.00 Programming Assignment
Coursework 2 25.00 Programming Assignment
Coursework 3 25.00 Design Assignment
Coursework 4 25.00 Design Assignment
Digital Signal Processing
Artificial Intelligence and Intelligent Systems

Selected topics from the field of artificial intelligence with particular focus on the interface with electronic systems.

HDL for Programmable Devices

This module introduces both the syntax and application of HDL for the design of modern electronics. That would typically cover Xilinx, Mentor Graphics, and combinational and sequential circuits design. The module will use the software tools from both Xilinx and Mentor Graphics to present FPGA based digital system design flow with VHDL.

RF Electronics

This module covers the main concepts in design of high-speed circuits and devices. These typically include passive circuits, amplifiers  and active devices.

Advanced Control (autumn) 20 credits

This module covers a range of advanced control techniques used in a wide range of engineering applications. Typical topics include multivariable state space modelling, linear and nonlinear systems, continuous and discrete domains and observer theory.

Delivery

Activity Number of Weeks Number of sessions Duration of a session
Lecture 7 weeks 2 weeks 2 hours
Practicum 10 weeks 1 week 2 hours

Assessment method

Assessment Type Weight Requirements
Coursework 50.00

Part 1: weight 25%, 25 hours of student effort; assessment of student ability to demonstrate fundamental acquisition of the module's learning outcomes.

Part 2: weight 25%, 25 hours of student effort; assessment of student ability to demonstrate application of the module's learning outcomes to realistic engineering design and implement tasks.

Exam 50.00 Formative health & safety risk assessment
Advanced Power Electronics

This module covers the design of power electronic converters for real applications. Both component-level design and the impact of non-idealities on modelling and operation are considered.

Power Systems for Aerospace, Marine and Automotive (spring) 20 credits

This module aims to develop an understanding of the design and operation of power systems in aerospace, marine and automotive applications.

With the introduction of more electrical technologies in these application areas, the understanding and expected performance of the power system has become a critical platform design issue.

Delivery

Activity Number of Weeks Number of sessions Duration of a session
Lecture 12 weeks 2 week 2 hours
Practicum  10 weeks 1 week 2 hours

 

Assessment method

Assessment Type Weight Requirements
Coursework 25.00

Part 1: weight 12.5%, 12.5 hours of student effort; assessment of student ability to demonstrate fundamental acquisition of the module’s learning outcomes.

Part 2: weight 12.5%, 12.5 hours of student effort; assessment of student ability to demonstrate application of the module’s learning outcomes to realistic engineering design and implement tasks.

Exam 75.00

 

Advanced AC Drives
Advanced Electrical Machines
Distributed Generation and Alternative Energy

This module aims to give an understanding of the operation of power systems which incorporate significant input from renewable energy generators, especially wind power systems and will enable design and analysis of such systems.

Instrumentation and Measurement (autumn) 20 credits

This module is an introduction to the principles and practice of instrumentation and measurement systems in an engineering context. The module will cover the generally applicable basic principles and then look at specific classes of instrument and associated electronics and signal processing methods. Topics covered include:

  • Basic principles and instrument characteristics.
  • Measurement errors, basic statistics, noise and its control.
  • Dynamic characteristics of instruments, time and frequency domain responses.
  • System identification using correlation techniques.
  • Amplifiers, filters, ADCs and DACs.
  • Position, strain, pressure and motion sensors (resistive, capacitive, inductive, optical).
  • Flow sensors.    
  • Electronic and optical measurement instrumentation.

Delivery

Activity Number of Weeks Number of sessions Duration of a session
Lecture 11 weeks 2 weeks 2 hours

Assessment method

Assessment Type Weight Requirements
Coursework 50.00

Coursework Part 1: weight 0.5, 25 hours of student effort; assessment of student ability to demonstrate fundamental acquisition of the module's learning outcomes.

Coursework Part 2: weight 0.5, 25 hours of student effort; assessment of student ability to demonstrate application of the module's learning outcomes to realistic engineering design and implement tasks.

Exam 50.00 2 hour exam.
Electrical Machines, Drive Systems and Applications

This module provides you with an understanding of the operational characteristics of common electrical machines (dc, ac induction, ac synchronous and stepping). Both theoretical and practical characteristics are covered including: electromagnetic theory applied to electrical machines, principles and structure of dc machines - commutation effects, principles and structure of induction machines, principles and structure of synchronous machines, parameterisation for performance prediction and machine testing and evaluation. You’ll have two one-hour lectures per week, supplemented with practical demonstrations for study of this module. 

Power Electronic Applications and Control

Providing an understanding of the operational principles of power electronic converters and their associated systems, this module covers: 3-phase naturally commutated ac-dc/dc-ac converters, capacitive and inductive smoothing - device ratings, dc-ac PWM inverters and modulation strategies, resonant converters, high power factor utility interface circuits and power converter topologies for high power (multilevel). You’ll have two one-hour lectures per week.

Integrated Circuits and Systems 20 credits

The module introduces CMOS integrated circuit design and internal operating mechanisms of semiconductor electronics and opto-electronic devices. 

Delivery

Activity Number of Weeks Number of sessions Duration of a session
Lecture 12 weeks 2 weeks 2 hours
Practicum  11 weeks 1 week 2 hours

Assessment method

Assessment Type Weight
Coursework 50.00
Exam 50.00
Power Networks

This module provides you with an understanding of power system apparatus and their behaviour under normal and fault conditions. Through a two hour lecture each week, you’ll cover topics such as: concept and analysis of load flow, voltage/current symmetrical components, computation of fault currents, economic optimisation, power-system control and stability, power system protection and power quality.

Digital Communications

This module is an introduction to the operation of modern digital communication systems. During two one-hour lectures each week, you’ll cover topics such as: communication systems, information content and channel capacity, digital modulation techniques, data compression techniques, error-correcting and line coding techniques, digital signal regeneration techniques and system examples.

Renewable Generation Technologies

This module covers the analysis and design of renewable and sustainable energy systems. It covers the various types of renewable energy and the resources available. It uses an understanding of the physical principles of various types of energy resources in order to develop analytical models which can be applied to the design of renewable energy systems, including energy conversion and storage, especially for electrical power generation.

Robotics, Dynamics and Control

This module gives and Introduction to electromechanical fundamentals in robotics, and introduces students to: Direct Kinematics, Inverse Kinematics, Workspace analysis and trajectory planning, Manipulator Dynamics (Lagrange, Lagrange-Euler, and Newton-Euler) and Robot Control.

Optical Networks

To introduce students to the concepts and operating principles of optical communication systems and networks and the devices that underpin them. Topics typically include characteristics of optical fibres and a range of active and passive optical devices such as for example transmitters, detectors, amplifiers, multiplexers, filters and couplers.

Mobile Technologies

This module provides the knowledge of the fundamentals of mobile communications and its application to real systems.

Sensing Systems and Signal Processing

The module provides students with the necessary background knowledge so that they can understand sensors and their applications.  The module covers a selection of topics where information is acquired from sensors and subsequently electronically processed. Applications will typically include, optical, acoustic, non-destructive evaluation, medical and bio-photonics.

Advanced Engineering Mathematics (spring) 10 credits

This module covers advanced analytic mathematical techniques used to provide exact or approximate solutions to common classes of ordinary differential equations (ODES) typical in Engineering. Techniques covered include: method of variation of parameters, Laplace transform methods, Taylor series method, Frobenius method, asymptotic regular perturbations and strained coordinates and multiple scales. Each week there will normally be one 1-hour lecture and a two-hour workshop to introduce key mathematical knowledge on module topics.

Delivery

Activity Number of Weeks Number of sessions Duration of a session
Laboratory 5 weeks 1 week 2 hours
Lecture 11 weeks 1 week 2 hours

Assessment method

Assessment Type Weight Requirements
Coursework 25.00  
Exam 75.00  
The above is a sample of the typical modules we offer but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. Modules (including methods of assessment) may change or be updated, or modules may be cancelled, over the duration of the course due to a number of reasons such as curriculum developments or staffing changes. Please refer to the module catalogue for information on available modules. This content was last updated on Tuesday 17 November 2020.

Learning and assessment

How you will learn

  • Independent study
  • Lectures
  • Group study
  • Practical classes
  • Workshops
  • Lab sessions
  • Supervision
  • Tutorials

You will be taught using up to date practices, including the use of electronic resources.

How you will be assessed

  • Coursework
  • Examinations
  • Lab skills
  • In-class test
  • Online exams
  • Dissertation
  • Reports
  • Research project
  • Presentations

The assessment strategy differs between the taught (120 credits) and individual project (60 credits) modules. A typical module contains both written assignment(s) and a year end exam which is mostly weighted as 50%. The individual project module is continuously assessed in the summer period and concludes with submission of a final project report, as well as an oral assessment based upon the practical demonstration of the proposed engineering design/solution. The pass mark for all the modules is 50%. Your final degree classification will be based upon your aggregated achievement from both the taught and the project stages of 180 credits.

Contact time and study hours

You will study a total of 180 credits which consists of 120 taught credits over autumn and spring semesters, with the final 60 credits from a large individual project carried out in the summer semester. Typical class contact time is 4 hours per week for a 20 credit module. There is typically 11 weeks of class teaching in each taught semester. In addition direct contact with academics, students are expected to put in additional self-study time preparing for lectures, tutorials, labs and assignments. As a guide, one credit is equivalent to 10 hours of total combined effort.

Typical class size is approximately 50 students. Teaching for this course usually takes place on Monday to Friday with the exception of Wednesday afternoon when students are involved in extracurricular activities.

Entry requirements

All candidates are considered on an individual basis and we accept a broad range of qualifications. The entrance requirements below apply to 2021 entry.

MSc

Undergraduate degreeA high 2:2 or equivalent in Electrical and/or Electronic Engineering, or other relevant degree.

Applying

Applicants with other relevant Engineering qualifications should demonstrate clear evidence that they have covered sufficient Electrical and or Electronics based subjects in their undergraduate studies. Please ensure that you include any relevant work experience in your personal statement.

Our step-by-step guide covers everything you need to know about applying.

How to apply

Fees

Qualification MSc
Home / UK £10,500
International £25,000

If you are a student from the EU, EEA or Switzerland starting your course in the 2021/22 academic year, you will pay international tuition fees.

This does not apply to Irish students, who will be charged tuition fees at the same rate as UK students. UK nationals living in the EU, EEA and Switzerland will also continue to be eligible for ‘home’ fee status at UK universities until 31 December 2027.

For further guidance, check our Brexit information for future students.

Additional costs

As a student on this course, you should factor some additional costs into your budget, alongside your tuition fees and living expenses. Project equipment and components are normally covered by the department, though some students opt to buy some of their own components up to £100.

You should be able to access most of the books you’ll need through our libraries, though you may wish to purchase your own copies or more specific titles which could cost up to £300. Please note that these figures are approximate and subject to change.

Funding

There are many ways to fund your postgraduate course, from scholarships to government loans.

The University also offers masters scholarships for international and EU students. Our step-by-step guide contains everything you need to know about funding postgraduate study.

Postgraduate funding

Careers

We offer individual careers support for all postgraduate students.

Expert staff can help you research career options and job vacancies, build your CV or résumé, develop your interview skills and meet employers.

More than 1,500 employers advertise graduate jobs and internships through our online vacancy service. We host regular careers fairs, including specialist fairs for different sectors.

Graduate destinations

Career destinations for our graduates in the department of Electrical and Electronic Engineering include:

  • IT business analysts
  • Systems designers
  • Programmers
  • Software development professionals
  • Production technicians
  • Electrical engineers and engineering professionals

Career progression

100% of postgraduates from the Department of Electrical and Electronic Engineering secured work or further study within six months of graduation. The average starting salary was £32,500, with the highest being £40,000.

* Known destinations of full-time home postgraduates who were available for employment, 2016/17. Salaries are calculated based on the median of those in full-time paid employment within the UK.

The Institution of Engineering and Technology (IET)

This course is accredited by the IET (Institution of Engineering and Technology) to meet the further learning requirements of a Chartered Engineer.

Two masters graduates proudly holding their certificates

Related courses

The University has been awarded Gold for outstanding teaching and learning (2017/18). Our teaching is of the highest quality found in the UK.

The Teaching Excellence Framework (TEF) is a national grading system, introduced by the government in England. It assesses the quality of teaching at universities and how well they ensure excellent outcomes for their students in terms of graduate-level employment or further study.

This content was last updated on Tuesday 17 November 2020. Every effort has been made to ensure that this information is accurate, but changes are likely to occur given the interval between the date of publishing and course start date. It is therefore very important to check this website for any updates before you apply.