Triangle

Course overview

Human computer interaction specialises in understanding the relationship between people and digital technologies. 

Global industries are developing user research and design to improve their products and services. There is an increasing demand for graduates in this innovative field. You will learn how to develop software and systems to better respond to the needs of customers, clients and users.

This interdisciplinary masters is taught by academics from the School of Computer Science and the Department of Engineering. You will study core modules that cover topics including mixed reality and user experience (UX) design. Optional modules give you the flexibility to study specialist areas such as games software and virtual reality.

All students will undertake an individual research project. This can be in collaboration with an industry partner or with one of our research groups: the Mixed Reality Laboratory and Human Factors lab.

Past projects have covered topics such as; augmented reality, location based services, virtual reality and voice interfaces.

Why choose this course?

Scholarship available

There are three levels to the award which range from 10-50% off your tuition fees.

Top 10

university in the UK, ranked by research power

Research Excellence Framework 2014

Ranked 6th in the UK

For universities targeted by the largest number of top employers in 2019-2020

High Fliers Report The Graduate Market 2019-2020

96.4% of postgraduates

from the School of Computer Science secured work or further study within six months of graduation

HESA Graduate Outcomes 2020, using methodology set by The Guardian

Course content

You will study a total of 180 credits, split across 120 credits of compulsory and optional modules plus a 60-credit individual project.

No computer programming experience is needed. If you are from other subjects you will study modules in fundamental computer science.

Modules

Core modules for all

Mixed Reality 20 credits

This module focuses on the possibilities and challenges of interaction beyond the desktop. Exploring the 'mixed reality continuum' - a spectrum of emerging computing applications that runs from virtual reality (in which a user is immersed into a computer-generated virtual world) at one extreme, to ubiquitous computing (in which digital materials appear embedded into the everyday physical world - often referred to as the 'Internet of Things') at the other. In the middle of this continuum lie augmented reality and locative media in which the digital appears to be overlaid upon the physical world in different ways.

You will gain knowledge and hands-on experience of design and development with key technologies along this continuum, including working with both ubiquitous computing based sensor systems and locative media. You will learn about the Human-Computer Interaction challenges that need to be considered when creating mixed reality applications along with strategies for addressing them, so as to create compelling and reliable user experiences.

Human-Computer Systems 10 credits

This module will provide students with a thorough understanding of the growth of IT and human computer systems. To examine the concepts and methods available for the analysis, design and evaluation of computer-based interfaces through hardware, software, task and systems design. 

Advanced Methods in Human Factors and Human-Computer Interaction (spring) 10 credits

Topics include:

  • working as a human factors engineer/HCI professional
  • predictive evaluation techniques (eg GOMs, Fitts Law)
  • psychophysical methods
  • verbal protocol analysis
  • qualitative approaches and methodologies
  • eye-tracking methodologies
  • ethical considerations in human factors research
  • capturing and analysing human physiological data
Individual Project: Human-Computer Interaction 60 credits

You will undertake a project which is relevant to human-computer interaction, developing your skills in research, such as:

  • planning research activities
  • empirical investigation
  • literature review
  • critical reflection
  • evaluation
  • oral and written communication
  • individual learning
  • time management.

Collaboration with business, industry, and other outside bodies is encouraged.

Design Ethnography 20 credits

This module introduces you to the theory and practice of design ethnography.

You will cover a range of topics including:

  • origins and evolution of ethnography
  • foundations and nature of the ethnomethodological approach
  • ethnographic analysis
  • its relationship to systems design
  • the perceived problems with the approach
Studying Human Performance (autumn) 20 credits

This module aims to give a broad review of the measurement techniques which can be used in ergonomic analysis and evaluation of systems or products, together with an understanding of the need for experimental design and control in order to obtain valid and meaningful results. It also provides a theoretical basis for techniques which may be practised during laboratory work and exercises in other human factors modules.

The module covers:

  • Introduction to experimental design; experimental controls; selection and recruitment of subjects; user trials; ethical considerations
  • Observational methods: direct and indirect observation; recording techniques; measurement of behaviour; activity sampling
  • Subjective measurements: ranking methods, rating scales, application in interviews and questionnaires
  • Task analysis: task description; tabular and hierarchical task analysis; applications
  • Introduction to SPSS
  • Descriptive statistics
  • Statistical analysis: Types of data; Normal distribution; Non-parametric tests; Parametric 2 samples tests, Correlation and regression, Chi Square, ANOVA

Core module if you do not have a background in design

Cognitive Ergonomics in Design 10 credits

This module will provide you with a thorough understanding of cognitive ergonomics and the way in which the consideration of cognitive ergonomics can impact on human performance in the workplace. 

Core module if you do not have a strong background in programming

Programming 20 credits

This module will give you a comprehensive overview of the principles of programming, including procedural logic, variables, flow control, input and output and the analysis and design of programs. Instruction will be provided in an object-oriented programming language.

Optional modules for all

Collaboration and Communication Technologies 10 credits

In this module, you will consider the design of collaboration and communication technologies used in a variety of different contexts including workplace, domestic and leisure environments. You will consider the basic principles of such technologies, explore the technologies from a social perspective, consider their impact on human behaviour and critically reflect on their design from a human-centred perspective.

Fundamentals of Information Visualisation 10 credits

Information Visualisation is the process of extracting knowledge from complex data, and presenting it to a user in a manner that this appropriate to their needs. This module provides a foundational understanding of some important issues in information visualisation design. You will learn about the differences between scientific and creative approaches to constructing visualisations, and consider some important challenges such as the representation of ambiguous or time-based data. You will also learn about psychological theories that help explain how humans process information, and consider their relevance to the design of effective visualisations.

If you want to learn how to design and implement your own interactive information visualisation, you should also take the linked module G53IVP (Information Visualisation Project). Together, these two modules form an integrated 20 credit programme of study.

Games 20 credits

This module covers the history, development and state-of-the-art in computer games and technological entertainment.

You will gain an appreciation of the range of gaming applications available and be able to chart their emergence as a prevalent form of entertainment. You will study the fundamental principles of theoretical game design and how these can be applied to a variety of modern computer games.

In addition, you will study the development of games as complex software systems. Specific software design issues to be considered will include the software architecture of games, and the technical issues associated with networked and multiplayer games.

Finally, you will use appropriate software environments to individually develop a number of games to explore relevant theoretical design and practical implementation concepts.

Information Visualisation Project 10 credits

In this module you will gain practical experience of how to design and evaluate a distinctive interactive visualisation which presents information gathered from a complex and interesting data source.

You will gain experience in web-based technologies that enable the implementation of multi-layered and interactive information visualisations, supported through lab work that introduces specific features of these technologies.

This module will require some challenging programming work and assumes some basic knowledge of HTML, CSS and Javascript. Introductory tutorials will be provided to those without this prior knowledge.

Data Modelling and Analysis 20 credits

This module will enable you to appreciate the range of data analysis problems that can be modelled computationally and a range of techniques that are suitable to analyse and solve those problems.

Topics covered include:

  • basic statistics
  • types of data
  • data visualisation techniques
  • data modelling
  • data pre-processing methods including data imputation
  • forecasting methods
  • clustering and classification methods (decision trees, naīve bayes classifiers, k-nearest neighbours)
  • data simulation
  • model interpretation techniques to aid decision support

Spending around four hours each week in lectures and computer classes, appropriate software (eg. R, Weka) will be used to illustrate the topics you'll cover.

Simulation and Optimisation for Decision Support 20 credits

This module offers insight into the applications of selected methods of decision support. The foundations for applying these methods are derived from:

  • operations research simulation
  • social simulation
  • data science
  • automated scheduling
  • decision analysis

Throughout the module, you will become more competent in choosing and implementing the appropriate method for the particular problem at hand. You will engage in a mixture of lectures, workshops, and computer classes.

Physical Ergonomics 10 credits

This module aims to equip students with fundamental knowledge and skills regarding the physical characteristics of people (body size, strength, flexibility, etc.) and environments (lighting, thermal, sound, etc.) as they relate to the design of products, workplaces and tasks/jobs. You’ll spend two hours in lectures each week when studying this module.

Simulation, Virtual Reality and Advanced Human-Machine Interface (autumn) 10 credits

For human factors/ergonomics work, simulation tools can enable designers, managers and end-users to experience products and systems in realistic, interactive environments. Such advancements have significant cost implications, enabling designs and their implications to be visualised early in the development life cycle. In addition, virtual/augmented reality and other advanced human-machine interfaces (HMIs) are being developed in many different industries to support different user needs.

This module will provide you with the knowledge and skills required to understand and utilise computers as human factors tools for understanding peoples’ interactions with new technology. Moreover, the module will consider HMIs that are increasingly common in modern life and frequently designed and evaluated using simulation techniques.

The module is a mix of practical and research-oriented content, and you will make extensive use of the simulation facilities and on-going research projects within the Human Factors Research Group and elsewhere in the University.

Topics include:

  • virtual reality technologies/environments/interfaces
  • augmented reality; fidelity and validity of simulators
  • presence factors for simulation
  • understanding and minimising simulator sickness
  • multimodal interfaces including the use of natural language and gesture interfaces, computers and collaborative/social interfaces, accessibility, in-car interfaces 

Delivery

Activity Number of Weeks Number of sessions Duration of a session
Lecture 11 weeks 1 week 2 hours
Practicum 11 weeks 1 week 2 hours

Assessment method

Assessment Type Weight Requirements
Coursework 1 50.00 Report (approx. 3,000 words) on the use of simulation to aid in the design/evaluation of specific products
Coursework 2 50.00 Presentation arguing for the use of advanced Human-Machine Interface solutions in a specific design context
Software Engineering Management 20 credits

This module is part of the software engineering theme.

This module covers the following topics:

  • management of the introduction of new software or IT systems
  • software project management practices
  • practical experience of use of an Agile software development project management process
  • practical experience of use of Test Driven Development, pair programming and various approaches to software management tools, including the use of software versioning, project management planning tools and continuous integration and deployment
Work Systems and Safety (spring) 20 credits

This modules aims to give an understanding of systems approaches to the design and analysis of effective and safe work, primarily in the context of industrial systems but also in relation to major projects, public and social systems and digital systems.

It is vital that students learn that technical, human, organizational and economic factors must be addressed when understanding the operation and potential failure in existing systems, and in developing requirements, implementation and evaluation approaches for social and socio-technical systems, and for systems of systems.

In this module, particular attention will be paid to distributed (in time and space) systems and ones with elements of automated processes (all of which will have to interact with human and organisational elements at some point and time). The potential causes of accidents and of human error are explained, and an introduction given to methods of reporting and investigating accidents and techniques for analysing accidents and systems reliability which will lead to the design of safer organisations and work systems.

Topics covered include:

  • risk and risk perception
  • risk assessment and management
  • accident models and accident causation
  • causes of human error
  • epidemiology, accident reporting and analysis
  • accident prevention
  • human reliability assessment
  • safety climate and culture
  • safety systems management

Method and Frequency of Class:

Activity Number of Weeks Number of sessions Duration of a session
Lecture 12 weeks 2 week 2 hours


Method of Assessment:

Assessment Type Weight Requirements
Coursework 1 30.00  
Exam 1 70.00  
Human-AI Interaction 20 credits

This module is an introduction to the design of human-AI interaction to ensure the AI-driven systems we build are beneficial and useful to people.

The module will cover practical design topics including methods and techniques such as natural language processing and human-robot interaction. The module will also consider societal and theoretical concerns of human-AI interaction, including the ethics of AI, responsible innovation, trust, accountability and explainable AI.

The practical component of the module will involve building AI-driven systems that drive conversational experiences, such as a text-based ‘chatbots’ and speech-controlled services/ ‘skills’, involving automatic speech recognition and natural language processing.

Programming 20 credits

This module will give you a comprehensive overview of the principles of programming, including procedural logic, variables, flow control, input and output and the analysis and design of programs. Instruction will be provided in an object-oriented programming language.

Cognitive Ergonomics in Design 10 credits

This module will provide you with a thorough understanding of cognitive ergonomics and the way in which the consideration of cognitive ergonomics can impact on human performance in the workplace. 

The above is a sample of the typical modules we offer but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. Modules (including methods of assessment) may change or be updated, or modules may be cancelled, over the duration of the course due to a number of reasons such as curriculum developments or staffing changes. Please refer to the module catalogue for information on available modules. This content was last updated on Friday 22 October 2021.

Learning and assessment

How you will learn

  • Lectures
  • Tutorials
  • Seminars
  • Computer labs
  • Practical classes
  • Project work
  • Supervision

You will study a total of 180 credits, split across 120 credits of compulsory and optional modules plus a 60-credit individual project.

You will work in classrooms and labs to develop a theoretical and practical understanding of this subject.

Teaching is typically delivered by professors, associate and assistant professors. Some practical laboratory sessions and research projects may be supported by postgraduate research students or postdoctoral research fellows.

How you will be assessed

  • Coursework
  • Written exam
  • Project work

Modules are assessed using a variety of individual assessment types which are weighted to calculate your final mark for each module. In many modules, assessments are mixed with 75/25 or 25/75 coursework/exam.

The final degree classification will be the average of all credits, eg an average of 120 taught credits and 60 credits on your project. To pass a module you’ll need at least 50%.

Contact time and study hours

The class size depends on the module. In 2019/2020 class sizes ranged from 25 to 110 students.

All students meet their tutors in the Induction week. Students are then encouraged to make individual arrangements to discuss any issues during the study. Some staff offer weekly drop-in time for students.

Entry requirements

All candidates are considered on an individual basis and we accept a broad range of qualifications. The entrance requirements below apply to 2022 entry.

Undergraduate degree2:1 (or international equivalent) in a computer science, engineering, natural sciences, social sciences or art and design subject.

Applying

Our step-by-step guide covers everything you need to know about applying.

How to apply

Fees

All listed fees are per year of study.

Qualification MSc
Home / UK £11,600
International £26,500

Additional information for international students

If you are a student from the EU, EEA or Switzerland, you will pay international tuition fees in most cases. If you are resident in the UK and have 'settled' or 'pre-settled' status under the EU Settlement Scheme, you will be entitled to 'home' fee status.

Irish students will be charged tuition fees at the same rate as UK students. UK nationals living in the EU, EEA and Switzerland will also continue to be eligible for ‘home’ fee status at UK universities until 31 December 2027.

For further guidance, check our information for applicants from the EU.

These fees are for full-time study. If you are studying part-time, you will be charged a proportion of this fee each year (subject to inflation).

Additional costs

We do not anticipate any extra significant costs. You should be able to access most of the books you’ll need through our libraries, though you may wish to purchase your own copies which you would need to factor into your budget.

Funding

To help support our students, we offer an Excellence in Computer Science scholarship. There are three levels to the award which range from 10-50% off your tuition fees. You will also receive a tablet to use for the duration of your study.

There are many ways to fund your postgraduate course, from scholarships to government loans.

We also offer a range of international masters scholarships for high-achieving international scholars who can put their Nottingham degree to great use in their careers.

Check our guide to find out more about funding your postgraduate degree.

Postgraduate funding

Careers

We offer individual careers support for all postgraduate students.

Expert staff can help you research career options and job vacancies, build your CV or résumé, develop your interview skills and meet employers.

Each year 1,100 employers advertise graduate jobs and internships through our online vacancy service. We host regular careers fairs, including specialist fairs for different sectors.

International students who complete an eligible degree programme in the UK on a student visa can apply to stay and work in the UK after their course under the Graduate immigration route. Eligible courses at the University of Nottingham include bachelors, masters and research degrees, and PGCE courses.

Graduate destinations

This course provides you with skills and expertise in human-centred design. You will be prepared for a range of careers and roles, such as:

  • interactive systems design
  • user experience design
  • user interface design
  • usability engineering

Our graduates have lots of great job opportunities. Computer science-related skills make up 4 of the top 5 'most in-demand skills for employers in 2020’ according to LinkedIn.

Career progression

96.4% of undergraduates from the School of Computer Science secured graduate level employment or further study within 15 months of graduation. The average annual salary for these graduates was £28,895.*

* HESA Graduate Outcomes 2020. The Graduate Outcomes % is derived using The Guardian University Guide methodology. The average annual salary is based on graduates working full-time within the UK.

Two masters graduates proudly holding their certificates
" I'm an Associate Professor in the School of Computer Science. I teach modules in data science and artificial intelligence, as well as supervising MSc dissertation projects on a wide range of topics. I'm also involved in a research project using AI for finding and correcting bugs in code, and I'm writing a book about study skills for PhD students. "

Related courses

This content was last updated on Friday 22 October 2021. Every effort has been made to ensure that this information is accurate, but changes are likely to occur given the interval between the date of publishing and course start date. It is therefore very important to check this website for any updates before you apply.