Triangle

Course overview

  • Biotechnology is a revolutionary science which builds on biology to develop breakthrough technologies and products which impact on health, medicine, food and the environment.
  • You will be introduced to the latest molecular techniques used to manipulate biological systems and can specialise in plant, animal or microbial biotechnology.
  • Gain understanding and application across fundamental aspects of physiology, biochemistry, and the genetics of a cell.
  • Modern biotechnology topics includes genetically modified crops, industrially significant micro-organisms, animal transgenesis and sustainable development.

Graduates are equipped with core competencies building on a solid scientific background, you will also gain commercial awareness and transferable skills to explore a wide range of career options.

The course can be taken over four years to include a year in computing science, an industrial placement or a year studying abroad. 

Additional year in Computer Science

Boost your degree even further by studying computer science for a year between years two and three of your degree, extending your degree to a four year programme.

A year spent in the University's School of Computer Science will give you training in software development and computing skills relevant to your final year research project and benefit you in your future career.

You can decide to transfer into this programme from your BSc course when you start your degree (subject to progression criteria).


Entry requirements

All candidates are considered on an individual basis and we accept a broad range of qualifications. The entrance requirements below apply to 2019 entry.

UK entry requirements
A level ABB-BBB

Please note: Applicants whose backgrounds or personal circumstances have impacted their academic performance may receive a reduced offer. Please see our contextual admissions policy for more information.

Required subjects

At least two science-based subjects at A level (biology is required; other subjects usually include chemistry, physics or maths but can include geography and psychology), and an additional A level or equivalent. We may also consider ABC depending on predicted grades in specific subjects.

IB score 32-30 including 5 in two science subjects at Higher Level (must include biology)

A levels: ABB-BBB, including at least two science-based subjects at A level (biology is required; other subjects usually include chemistry, physics or maths but can include geography and, exceptionally, psychology), and an additional A level or equivalent.

General studies, critical thinking, citizenship studies and leisure studies are not accepted. We may also consider ABC depending on predicted grades in specific subjects.

English language requirements 

IELTS 6.0 (no less than 5.5 in any element)

For details of other English language tests and qualifications we accept, please see our entry requirements page.

 

British Council accreditedIf you require additional support to take your language skills to the required level, you may be able to attend a presessional course at the Centre for English Language Education, which is accredited by the British Council for the teaching of English in the UK. 

Students who successfully complete the presessional course to the required level can progress onto their chosen degree course without retaking IELTS or equivalent.

Alternative qualifications 

For details please see alternative qualifications page

Foundation year - a foundation year is available for this course

Science Foundation Certificate

International students only

International students (non-EU) who do not have the required qualifications or grades to go directly onto an undergraduate degree course, may be interested in the Science Foundation Certificate delivered through The University of Nottingham International College. You are guaranteed a place on selected undergraduate courses if all progression requirements are met. 

Science with Foundation Year

Home, EU and international students

If you have achieved high grades in your A levels (or equivalent qualifications) but do not meet the current subject entry requirements for direct entry to your chosen undergraduate course, you may be interested in our one year science foundation programme. Applicants must also demonstrate good grades in previous relevant science subjects to apply. You are guaranteed a place on selected undergraduate courses if all progression requirements are met.  

Flexible admissions policy

In recognition of our applicants’ varied experience and educational pathways, the University of Nottingham employs a flexible admissions policy. We may make some applicants an offer lower than advertised, depending on their personal and educational circumstances. Please see the University’s admissions policies and procedures for more information.


Notes for applicants 

Our modular courses are flexible and offer the opportunity to combine your main studies with modules in other subject areas (please note that all modules are subject to change).

Mature Students

At the University of Nottingham, we have a valuable community of mature students and we appreciate their contribution to the wider student population. You can find lots of useful information on the mature students webpage.

Learning and assessment

How you will learn

How you will be assessed

Year in industry

The optional year in industry takes place between years two and three of your degree, extending your degree to a four year programme. Students apply for a placement during year two of the degree programme.

A year in industry can help you:

  • Gain the opportunity to put your learning into practice, giving you a better understanding of your studies and the chance to solidify your knowledge in an industry setting. 
  • Stand out from the crowd as a graduate: many students secure a graduate job as a direct result of their placement year.
  • Learn about what you enjoy doing, and your strengths and weaknesses, putting you in a strong position when considering your future career.

The school has excellent links with a wide range of businesses and research institutes, examples of relevant companies include GlaxoSmithKline, Kew Gardens, Pfizer, Medimmune and Johnson & Johnson.The dedicated School Placement Team work with you to help you search for, apply and secure a placement, as well as supporting you prior to, during and after the placement.

Study Abroad and the Year in Industry are subject to students meeting minimum academic requirements. Opportunities may change at any time for a number of reasons, including curriculum developments, changes to arrangements with partner universities, travel restrictions or other circumstances outside of the university’s control. Every effort will be made to update information as quickly as possible should a change occur.

Modules

During the first year, you will study a broad base of core modules in Biochemistry, Genetics and Cell Biology, Animal Biology and Microbial Physiology. You will gain an understanding of the biochemical processes in living organisms and get to explore the ultrastructure of cells - the structure too small to be seen with an ordinary microscope.

Core modules

Introduction to Biotechnology

The aim of the module is to introduce the you to the broad based biotechnology discipline. You will study plants, animals and microbial systems and the impact and ethics of biotechnology in different sectors. An active learning approach is coupled with tutorials to understand the impact of the discipline. 

Genes and Cells

Cells are the basic functional units of life, but how do they grow and develop? In this module, you’ll follow the lifecycle of cells. You'll focus on mitosis, meiosis, cell division and differentiation. We’ll put cells not just under the microscope, but use advanced laboratory technologies to explore the ultrastructure of cells. These are the parts of cells too small to be seen through ordinary laboratory equipment. You’ll then put this science to the test, to apply cellular biology to applied genetics.

You’ll study:

  • structures and ultrastructures of animal and plant cells
  • microscopic features of bacteria and viruses
  • gene replication, expression and inheritance
  • laboratory methods used to discover how cells work
Applied Genetics

In a series of lectures, workshops and practicals you’ll further develop your understanding of gene structure, function and regulation and investigate how this knowledge can be applied in recombinant DNA technology through DNA sequencing and genetic engineering. Specialist options within animal, plant and microbial spheres will allow for subject specific applications of genetic techniques and theories which form an underpinning knowledge base for subsequent modules.

The Biosciences and Global Food Security

How can you use science to help improve global food security? This module introduces you to the issues of global food security and the complexity existing in different parts of our food generation system. Looking across the food supply chain, you’ll cover the evolution of crops, crop and animal production, and the food industry. Importantly, you’ll also look at sustainable nutrition because food security isn’t just about supply – it’s important that people are getting the right kind of food. You’ll learn about these issues through a mix of lectures and practical laboratory sessions. You’ll also develop professional skills to work safely in laboratory situations.

Introduction to Genetics and Biochemistry

Have you ever wondered how some crops can resist diseases? This module provides you with the fundamentals for understanding biochemical processes in living organisms. You’ll be introduced to the basic structure, properties and functions of the four key biological macromolecules: nucleic acids, proteins, carbohydrates and lipids. You’ll also look at the metabolic pathways occurring in cells, such as respiration, photosynthesis and the biosynthetic pathways for the key macromolecules. In addition to lectures, you’ll have practical laboratory sessions to learn how to use key biochemical techniques for the separation and analysis of macromolecules and measurement of the metabolic process.

Microbes and You

Through this module, you will be given perspective on how microbes interact with humans, animals, plants and other organisms.

You'll study:

  • how they influence environmental processes
  • how microbial products contribute to healthcare, food production, and manufacturing
  • the influence of technological developments
  • scientific understanding of microbes and the public perception of them

This is a 20 credit module.

Biosciences Tutorials and Foundation Science

The tutorials component of this module is intended to enhance your transition into university and guide you through the academic expectations of your degrees. This part of the module is spread throughout the year and includes three generic sessions on ‘study skills and plagiarism’, ‘study opportunities’ and ‘career and personal development’, and a series of small group tutorials with your academic tutor to develop generic skills such as finding crucial information, oral presentation, data handling and presentation of results, preparation for examinations, and essay writing skills relevant to biosciences.

The Foundation Science content has three elements: chemistry, maths and statistics and physics. The chemistry element will include: elements and periodic table; atomic structure and bonding; intermolecular attractions, chemical equilibrium; acids and bases, oxidation and reduction; rates of reaction; basic organic chemistry, isomerism, and rings.  The Maths and Stats element will include: calculations, algebra, functions and relationships, powers, logarithms, descriptive statistics, significance, regression and presenting data. The Physics element will include: units and dimensions; power, energy and heat; light and the electromagnetic spectrum; attenuation/absorption; and radioactivity.

There is also an IT element, which interfaces with generic IT training for undergraduates provided within the University.

Optional modules

Introductory Physiology

What major physiology systems are essential for life in animals and humans? In this module you will learn about:

  • the body's principle physiological systems including the nervous, respiratory, cardiovascular, reproductive, renal and digestive systems
  • the structure and function of the major organs including the function of individual cell types

Through weekly lectures, we will cover topics on genes, proteins and membranes, transport of molecules across membranes, nerve signalling and biorhythms. 

Introduction to Plant Science

How can mutant plants be used to improve crop yield? In this module you’ll be introduced to plant evolution and the cellular structure of plants, in particular seeds, leaves, flowers and roots, and how these multicellular tissues are constructed. You’ll become familiar with the techniques used to study plant science, including genetics and the use of mutants. Using model plants, such as Arabidopsis, you’ll look at the development of modern plant biology and genetics and then explore the applications of biotechnology in plant science. You’ll also examine the importance of plant nutrition and how the interaction with pathogens is crucial to plant growth and production. You’ll have a mix of lectures and practical laboratory sessions to apply your learning.

Plant Science Research Tutorials

In this 10 credit module you'll learn about our latest plant and crop research. Each week different academics will explain and demonstrate the research being carried out by their group.

You’ll be able to:

  • find out how research is contributing to our understanding of plant function and society’s needs
  • discover what area of plant science you find most interesting
The Physiology of Microbes

This module will develop your knowledge of bacterial cell structures and growth. You'll understand the mechanisms that allow bacteria to respond to their environment. You'll study:

  • how to handle data commonly used in microbiological experimentation
  • basic practical methods required for all microbiological laboratory work

You'll learn through a three hour practical and four hours of lectures each week. This is a 20 credit module.

The above is a sample of the typical modules we offer but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. Modules (including methods of assessment) may change or be updated, or modules may be cancelled, over the duration of the course due to a number of reasons such as curriculum developments or staffing changes. Please refer to the module catalogue for information on available modules. This content was last updated on Friday 16 August 2019.

You will have a wide choice of optional modules allowing you to specialise in the areas which most interest you. Core modules include Molecular Biology and the Dynamic Cell, Principles of Immunology.

Core modules

Principles of Immunology

What are the main events of the immune response when the body is infected by intra and extracellular parasites, essential components of many diseases? In this module you’ll be introduced to the fundamental concepts behind cellular and molecular immunology. You’ll learn about the main characteristics and features of the innate and adaptive immune system, their functions and how they relate to each other. You’ll explore current immune-techniques, modern concepts of immune-deficiency and hypersensitivities, and contemporary topics in animal and human diseases.

Molecular Biology and the Dynamic Cell

This module offers a detailed study of the core molecular processes that enable cells to function such as DNA biochemistry, gene expression, protein synthesis and degradation. You will learn about the basic molecular processes that underpin the function of eukaryotic cells and to describe how different organelles within the cell function, with an emphasis on the dynamic nature of cell biology. You will have lectures, practical classes, a poster presentation and tutorials.

Molecular Pharming and Biotechnology

The creation of genetically modified organisms (GMOs) is having a major impact on modern agriculture. Transgenic research and “synthetic biology” approaches have the potential to enable plants to be used as “green factories” for the production of novel products. Through this module, you’ll gain both theoretical and practical knowledge as to how transgenic organisms are engineered. You’ll also learn about the production of traditional plant products and their uses in biotechnological industries, and the use of marker assisted breeding techniques. You’ll have lectures and practical laboratory sessions to really get into the analysis of the applications of these technologies, but you’ll also get to look out into industry and broader. There will be industrial field trips to see what you’ve learnt in practice and experts in the field will be invited to lecture and give some thought-provoking debate about the ethical, commercial and environmental concerns around GMO technology.

Professional Skills for Bioscientists

This module focuses on career management skills and the knowledge required to gain success within the global job market. You will have the opportunities to evaluate your own skills, interests, experiences and goals to identify suitable opportunities. Training will be given in core competencies and techniques that can be used to make strong job applications.

Research Skills for Biotechnologists

In this module you will develop and consolidate your professional competencies and abilities as a biotechnologist. You’ll improve your core professional skills in the scientific method, experimentation, data analysis and measurement techniques that enable you carry out scientifically-sound research in animal, plant and/or microbial biotechnology. You’ll also cover discipline-specific topics in problem based learning scenarios. There will be a mix of lectures, workshops and group activity sessions for you to work on your skills.  

Epigenetics and Developmental Biotechnology

This module introduces current concepts of molecular mechanisms in animal development and techniques to study and manipulate animal phenotypes. You will study how developmental programs are remarkably conserved among species, including humans. Insights gained from molecular studies of the fruit fly, zebra fish and chicken are directly relevant to our understanding of mammalian development. Signals and factors regulating key events in establishing the body plan of an animal are discussed. Epigenetic processes in mammals that mediate X-chromosome inactivation and genomic imprinting will be described.

Optional modules

Bacterial Biological Diversity

This module is designed to provide an understanding of the extent of bacterial biological diversity. Following introductory lectures on bacterial taxonomy and classification and web-page design, you’ll undertake two student-centred exercises. The first will be the production of an essay on a chosen organism covering its taxonomy, biology and ecology. The second will be a group exercise to design a web site including the material collated for the essay.

Virology

The module will provide an introduction to viruses and their interactions with their hosts (bacteria, plants and animals including humans) as well as discussing the structure of viruses and their significance including pathogenesis and molecular biology. You’ll spend four hours per week in lectures studying for this module.

Structure, Function and Analysis of Genes

This module will provide you with a comprehensive understanding of the structures of DNA and RNA and how the information within these nucleic acids is maintained and expressed in both prokaryotic and eukaryotic cell types. Additionally, this module describes how nucleic acids can be manipulated in vitro using molecular biological approaches. Practical classes will focus your learning on the cloning and manipulation of DNA to express recombinant proteins in bacterial systems.

Applied Plant Physiology: from cell to crop

In this module you will gain a comprehensive understanding of plant physiology. We’ll take an applied approach – right from the molecular level to the field – to understand what it means for growers in the UK and worldwide. We’ll examine:

  • the mechanisms that plants use to capture and utilise physical resources: i.e. solar energy, water and nutrients
  • the physiological basis of resource capture and utilisation in growth and development
  • physical aspects of the plant environment combining these key processes

The module also considers contemporary issues and future developments in agronomy and the role of the agronomist in successful crop management. You will learn through lectures, practical classes and tutorials.

Applied Animal Science

A highly applied module, you’ll learn about animal physiology, nutrition and management and use your knowledge to think critically about production systems. Focusing on the nutrition, growth and welfare of farmed animals, you’ll cover a wide range of subjects, including investigating the energy and protein evaluation systems for ruminants and non-ruminants and the differential maturity of individual carcass components. You’ll compare systems of production for all major species of livestock and explore how these different systems integrate with each other and other enterprises on farms. Visits to local livestock farms give you the opportunity to further develop your understanding within a ‘real-life’ context and are a core component of the module.

Bacterial Genes and Development

Molecular events that occur during the control of gene expression in bacteria will be explored. You'll learn by considering case studies, which will show you how complex programmes of gene action can occur in response to environmental stimuli. You will also study the regulation of genes in pathogenic bacteria.

Microbial Biotechnology

You'll cover the key groups of eukaryotic and prokaryotic microorganisms relevant to microbial biotechnology, principles of GM, and strain improvement in prokaryotes and eukaryotes. The impact of “omics”, systems biology, synthetic biology and effects of stress on industrial microorganisms are explored, alongside the activities of key microorganisms that we exploit for biotechnology.

Analysis of Bacterial Gene Expression

This module covers the major techniques required for analysis of gene expression including methods for gene sequence and transcriptional analysis. An in depth study of vectors and gene constructs provides an understanding of the different strategies used in creating mutants and identifying gene function in bacteria. As well as practical's, the coursework exercises are designed to illustrate the topics covered in the lecture course and will give students experience of experimental design and critical analysis of research data and an introduction to bioinformatics for the analysis of DNA and protein sequences.

Computer Modelling in Science: Introduction
The aim of this module is to introduce the use of computing programming and modelling in the biological and environmental sciences for model simulation and image processing.
Plant Pests and Diseases

Sugarbeet root aphids feed on the sap in the roots, causing damage and production losses. But how does this pest work and what can be done? In this module, you’ll explore how microbes and insects cause disease in plants and the effect of interactions between plants, microbes and insects. Looking globally, you’ll be able to explain the importance and the nature of the organisms that are pests and diseases of plants, including population dynamics and epidemiology. You’ll also assess the main approaches for control and management of pests and diseases, including chemical interventions, resistance breeding in plants and biological control. You’ll have lectures complemented by practical laboratory sessions, videos and demonstrations.

Principles of Animal Nutrition

How important is protein quality in your livestock’s diet? How can you formulate an optimum diet? In this module you’ll learn about diet formulation and food analysis. You’ll examine topics such as: dietary energy and nutritional energetics, protein and amino acid nutrition, and regulation of appetite and energy expenditure. You’ll be able to calculate the different energy requirements of animals in different physiological or pathological states. There will be a mix of lectures, seminars and computer-based workshops to apply what you’ve learnt. 

Principles of Animal Health and Disease

This module will introduce the major effects of diseases on the body’s physiological and immunological systems. The main types of disease will then be systematically discussed using a range of companion, farm and exotic animal species including poultry, equine, bovine and ovine species. You’ll have lectures and laboratory practicals each week.

Microbial Mechanisms of Foodborne Disease

This module provides a fundamental understanding of the microorganisms causing food-borne disease. You'll learn about the mechanisms by which they do this and their routes of transmission.

In laboratory practicals you will learn a number of core practical methods needed for the safe handling, culture, isolation, enumeration and identification of a range of level 2 pathogens.These are biological agents that can cause disease including Staphylococcus aureus, Listeria and Salmonella. 

Structure, Function and Analysis of Proteins

This module considers the structure and function of soluble proteins and how individual proteins can be studied in molecular detail. More specifically you will learn about the problems associated with studying membrane-bound proteins and build an in-depth understanding of enzyme kinetics and catalysis. You will learn about the practical aspects of affinity purification, SDS PAGE, western blotting, enzyme assays, bioinformatics and molecular modelling approaches.

The above is a sample of the typical modules we offer but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. Modules (including methods of assessment) may change or be updated, or modules may be cancelled, over the duration of the course due to a number of reasons such as curriculum developments or staffing changes. Please refer to the module catalogue for information on available modules. This content was last updated on

Your research project is a very important component of year three and may involve molecular studies on animals, plants or microorganisms. You'll work in close collaboration with research-active scientists on problems of real significance, making use of the considerable research expertise and facilities available on campus. You will also have a wide choice of optional modules to choose from in year three enabling you to specialise in your chosen area of interest.

Research project examples include:

  • Biopharmaceuticals and natural product drugdiscovery
  • Generation of recombinant calpastatin tostudy effects on muscle growth associatedwith various forms of cancer
  • mRNA Methylation
  • Mesophyll cell development in differentspecies of wheat and grasses
  • Optimising the production of green sugarsfrom municipal solid waste

Core module

Biotechnology Research Project

This module will provide you with an opportunity to use your initiative and knowledge to undertake an original research project under the supervision of an individual member of academic staff. You will design the study, gain familiarity with the techniques, undertake data collection, debate ethical issues and where appropriate safety procedures relevant to the topic. You’ll undertake appropriate quantitative analysis and prepare a report. Many of these projects are carried out in collaboration with research institutes and industrial partners, and many of the inventions arising from research at Nottingham have led to patents being granted and the development of successful commercial products.   Examples of recent research projects include:

  • impact of compaction stress on Arabidopsis ecotypes
  • use of phage to infect bacteria internalised within leafy herbs
  • carotenoid mutants and RNAi plants
  • molecular detection and diagnosis of plant pathogens by DNA sequence homology
  • interleukin-1 receptor antagonists as potential anti-inflammatory drugs
  • expression of biotinylated proteins in the yeast system
  • biopharmaceuticals and natural product drug discovery
  • expression and characterisation of E. coli Tus proteins
  • understanding diversity and dynamics of bacterial populations
  • waste water treatment, bioremediation, biofuels  

Optional modules

Molecular Plant Pathology
Covers the molecular techniques being used to develop an understanding of plant/pathogen interactions. You will consider the molecular biology of plant pathogens, how these cause disease, and the mechanisms used by plants to defend themselves against such pathogens. You will spend around three hours per week in lectures studying this module.
Biotechnology in Animal Physiology

Building on the principles of animal development from earlier modules, you will be introduced to the world of the biotechnology industry, the techniques involved, and to the opportunities offered by this growing sector. You’ll learn about the genetic and epigenetic basis of gene regulation, and how this knowledge is used for developing new disease treatments and for improving livestock production and animal welfare.

Applied Bioethics 1: Animals, Biotechnology and Society

Animal-human interactions raise some prominent ethical issues. In this module, you’ll examine the ethical dimensions concerning animal agriculture, modern biotechnologies and research in the biosciences, in relation to both humans and non-human species. You’ll learn about the ethical frameworks used to analyse specific dilemmas raised by the human use of animals. Using specific animal and biotechnology case studies, you’ll interpret the main ethical theories and principles and apply them to the case studies to inform professional decision-making. You’ll have a mix of lectures and seminars to explore these concepts.

Gene Regulation

Examines the mechanisms through which eukaryotic genes are expressed and regulated, with emphasis placed on recent research on transcriptional control in yeast and post-transcriptional control in eukaryotes. Studying this module will include having three hours of lectures per week.

Molecular Diagnostics and Therapeutics

This module covers the use of various biochemical and molecular biological analytical techniques employed in clinical diagnosis, as well as the development of new molecular therapies based on modern biochemical and molecular biological techniques. By the end of the module you will understand the scientific basis behind a variety of molecular medical diagnostics and the methods for the development of new molecular therapies. The module is assessed by a two-hour essay based exam. 

Molecular Nutrition

This module will examine the concept of metabolic control at the gene, cell and tissue level with particular reference to the role of nutrients in regulating this process. Selected processes by which nutrients and hormones act via receptors and their signal transduction pathways to regulate tissue growth and metabolism will be described along with the mechanisms by which nutrients can act directly on the processes controlling gene expression. You’ll have a mix of lectures and practical sessions for this module.

Molecular Microbiology and Biotechnology

This module will enable you to comprehend the opportunities that protein engineering provides in applied microbiology and to appreciate some of the practical limitations associated with technology. You’ll gain a detailed understanding of prokaryotic protein expression and examples of its application to biotechnology. Practical classes and seminars will provide an insight into the necessary constraints and practicalities of experimental design and execution. The major coursework assignment introduces you to the rigour required for writing scientific papers.

Plant Cell Signalling

How does a plant know when it is being attacked? In this module you’ll learn about plant signalling molecules and the ways in which these signals are integrated to ensure appropriate responses to environmental conditions or plant pathogen attack. You’ll gain a detailed knowledge of how plants use intercellular and intracellular signalling strategies to provide information about their environment, with particular emphasis on the use of molecular genetics in enabling us to determine the nature of the signals and the cross-talk that takes place between them. You’ll have lectures and demonstrations, as well as laboratory sessions to gain practical experience of the techniques for studying plant hormone signalling.

Genetic Improvement of Crop Plants

The genetic improvement of crop plants is critical to address issues of food security for a growing world population and in the face of a changing climate. It is also the key to tackling environmental degradation and to meeting the increasing strict regulations on agricultural pollution which are coming into force in many Western countries. While these issues are not identical, they are linked and efficient plant breeding can be part of the solution to both. In this module, you’ll develop an understanding of crop genetic improvement through lectures, case and literature studies, research plan presentations, external expert seminars and practical exposure to crop breeding and molecular techniques. You’ll examine how modern and technological approaches can enhance crop breeding programmes and be able to assess the limitations of these approaches. The emphasis is on the application of biotechnology to conventional breeding, but you’ll also learn about genetic modification in the genetic improvement of crops. You’ll cover temperate and tropical, annual and perennial, and in-breeding and out-breeding crops.

Applied Bioethics 2: Sustainable Food Production, Biotechnology and the Environment

Building on Applied Bioethics 1, you’ll investigate widely accepted ethical principles and apply your insights to contemporary ethical issues in agricultural, food and environmental sciences. You’ll explore the ethical dimensions of prominent issues raised by the agricultural practices (including the use of biotechnology and GM crops) designed to meet the nutritional needs of the global population. You’ll also learn about how ethical theory can inform professional choices and public policies related to food production and environmental management. You’ll have a mix of lectures, tutorials and team-based exercises to develop a sound understanding of ethical principles.

Microbial Fermentation

This module commences with a review of microbial fermentation, including beer, cheese, yoghurt, meat and single-cell protein production, as well as sewage treatment. The underlying principles of microbial fermentation will be discussed, in addition to specific examples which will be examined in depth. From this basic knowledge the problems of microbial contamination and spoilage of the finished product will be analysed. You’ll spend four hours in lectures and have a four hour practical each week to study for this module.

Virology and Cellular Microbiology

The module will provide an in depth induction into the relationship of bacterial and viral pathogens and their hosts. Including understanding the underlying molecular basis of the adaptive response of bacteria to various environments and the mechanisms by which bacteria and viruses subvert cellular machinery. You’ll have a four hour weekly lecture to cover material for this module.

Plant Disease Control
Discusses applied aspects of plant disease control, comprising transmission, epidemiology, detection and diagnosis, and control options. You will cover control strategies based on application of fungicides, biological control, deployment of disease resistant varieties and biotechnological approaches. You will also consider the relative strengths and weaknesses of the different approaches. This module consists of a four-hour lecture once per week.
Sex, Flowers and Biotechnology

The processes of floral development and reproduction are some of the most critical stages occurring during plant growth and development. They are fundamental for plant breeding, crop productivity and horticulture. The significance of plant reproduction is particularly pertinent to issues of food security and the future development of high yielding crops. In this module, you’ll focus on recent developments that have been made in the understanding of floral development, reproduction and seed production, including the current goals, methods and achievements in the genetic engineering of crop and horticultural plants. With an emphasis on reproductive biology or fruit production, you’ll learn how such processes can be manipulated for commercial exploitation and to facilitate crop improvement. Through a mix of lectures and seminars, you’ll gain a detailed knowledge on the developmental and molecular processes associated with flowering, seed production and fruit development.

Technology Entrepreneurship in Practice

This module aims to provide you with the skills, knowledge and practical experience required to respond to the challenges involved in managing, commercialising and marketing technological innovation and new business development.

Computer Modelling in Science: Applications
Modern biological and environmental science includes the study of complex systems and large data sets, including imaging data. This necessitates the use of computer models and analyses in order to understand these systems. This module contains an introduction to computer programming and modelling techniques that are used in the biological and environmental sciences. Specifically, it contains: (i) Development, simulation and analysis for models in space and time, using the Python language, with applications in the biological and environmental sciences; (ii) Analysis of long term behaviour of models in two or more dimensions; (iii) Methods for fitting models to experimental and environmental data; (iv) analysis of image data. The module will focus on relevant applications in environmental and biological science, e.g. chemical, radioactive and biological pollution, crop development and pathogens and microbiology. The module will use the Python programming language throughout and be assessed by a patchwork assessment consisting of write-ups of assignments from during the semester.
Environmental Biotechnology
This module provides training in environmental biotechnology, with particular emphasis on the interaction between microorganisms and the environment. The main topics covered will be wastewater treatment, bioremediation of organic and inorganic pollutants, microbes as indicators of risk factors in the environment, microbes in agriculture (biocontrol and biofertilisers) and the role of microorganisms in bioenergy production.
Current Issues in Crop Science

In this integrative module you’ll consider the future options and possible strategies for maintaining or increasing crop production in the UK and world agriculture. You’ll learn about the latest trends and developments within crop science, and the philosophical, ethical and policy issues associated with them. The topics covered will vary to reflect the most recent issues, but have included: the future of genetically modified crops, impact of crop production on biodiversity and prospects for organic crop production. Using your subject knowledge and research skills, you’ll be in a position to critically analyse the advantages and disadvantages of developments in crop science, both for the module and in your future career.

Chemical Biology and Enzymes

Students should gain a good appreciation of the applications for a range of enzymological, chemical and molecular biological techniques to probe cellular processes and catalysis at the forefront in chemical biology research.

This module represents a culmination of principles and techniques from a biophysical, molecular, biochemical and genetic perspective.

Basic Introduction to Omic Technologies

Over the past few years major developments have been made regarding the study of genomes. Sequencing programmes now mean that the complete DNA sequence is now known for many species. Such information is revealing the high degree of similarity and conservation between different species and organisms, revolutionising the way in which gene function analysis is carried out. This module will provide a basic overview of recent research in the field of post-genomic technologies known as “omics” with emphasis on genomics, proteomics and metabolomics. Case studies will show how different approaches have been used to study genomes and how such developments are influencing the way genetic analysis and biotechnological improvement can be made. You will study by hands-on experience with problem-based lab and computer training sessions.

The above is a sample of the typical modules we offer but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. Modules (including methods of assessment) may change or be updated, or modules may be cancelled, over the duration of the course due to a number of reasons such as curriculum developments or staffing changes. Please refer to the module catalogue for information on available modules. This content was last updated on

Fees and funding

UK students

£9250
Per year

International students

£22620*
Per year

*For full details including fees for part-time students and reduced fees during your time studying abroad or on placement (where applicable), see our fees page.

If you are a student from the EU, EEA or Switzerland, you may be asked to complete a fee status questionnaire and your answers will be assessed using guidance issued by the UK Council for International Student Affairs (UKCISA) .

Scholarships and bursaries

The University of Nottingham offers a wide range of bursaries and scholarships. These funds can provide you with an additional source of non-repayable financial help. For up to date information regarding tuition fees, visit our fees and finance pages.

Home students*

Over one third of our UK students receive our means-tested core bursary, worth up to £1,000 a year. Full details can be found on our financial support pages.

* A 'home' student is one who meets certain UK residence criteria. These are the same criteria as apply to eligibility for home funding from Student Finance.

International students

We offer a range of international undergraduate scholarships for high-achieving international scholars who can put their Nottingham degree to great use in their careers.

International scholarships

Careers

Our degree courses offer a thorough preparation for a wide range of careers or further studies. Target industries are food, pharmaceutical, environmental and energy. Some of the career opportunities available for this degree are:

  • research scientist in industry and academia
  • advisory and management roles in government agencies
  • medical and healthcare
  • ethics, regulatory and patenting

Average starting salary and career progression

85.3% of undergraduates from the School of Biosciences secured employment or further study within 15 months of graduation. The average annual salary for these graduates was £24,418.*

*Data from UoN graduates, 2017-2019. HESA Graduate Outcomes. Sample sizes vary.

Studying for a degree at the University of Nottingham will provide you with the type of skills and experiences that will prove invaluable in any career, whichever direction you decide to take.

Throughout your time with us, our Careers and Employability Service can work with you to improve your employability skills even further; assisting with job or course applications, searching for appropriate work experience placements and hosting events to bring you closer to a wide range of prospective employers.

Have a look at our careers page for an overview of all the employability support and opportunities that we provide to current students.

The University of Nottingham is consistently named as one of the most targeted universities by Britain’s leading graduate employers (Ranked in the top ten in The Graduate Market in 2013-2020, High Fliers Research).

Dummy placeholder image

Related courses

Important information

This online prospectus has been drafted in advance of the academic year to which it applies. Every effort has been made to ensure that the information is accurate at the time of publishing, but changes (for example to course content) are likely to occur given the interval between publishing and commencement of the course. It is therefore very important to check this website for any updates before you apply for the course where there has been an interval between you reading this website and applying.