Triangle

This course is closed to UK/home applicants for 2021 entry.

Course overview

As our population grows, we need to produce new things smarter, safer and cleaner whilst protecting our natural resources.

Environmental engineers design processes and products that minimise impacts on air, land and water, whilst making the most of finite natural resources.

At Nottingham, you will learn the engineering knowledge and professional skills to design processes that make the products we all rely on.

Why choose this course?

  • Ranked 3rd in the UK for chemical engineering in The Guardian University Guide, 2021
  • Customise your degree to suit your interests
  • Get paid experience with a year out in industry

Entry requirements

All candidates are considered on an individual basis and we accept a broad range of qualifications. The entrance requirements below apply to 2021 entry.

UK entry requirements
A level AAB including A in maths and either physics or chemistry in Clearing

Please note: Applicants whose backgrounds or personal circumstances have impacted their academic performance may receive a reduced offer. Please see our contextual admissions policy for more information.

Required subjects

Grade A in maths A level, and either chemistry or physics (including a pass in the practical element).

General studies, critical thinking and citizenship studies are not accepted.

GCSE English grade 4 (C) are required.

IB score 34 overall in Clearing

Foundation progression options

You may access this course via an integrated honours foundation course or international foundation certificate with A level grades of BBB.

Mature Students

At the University of Nottingham, we have a valuable community of mature students and we appreciate their contribution to the wider student population. You can find lots of useful information on the mature students webpage.

Learning and assessment

How you will learn

Teaching methods

  • Group study
  • Independent study
  • Lab sessions
  • Lectures
  • Practical classes
  • Tutorials
  • Workshops

How you will be assessed

Assessment methods

  • Coursework
  • Dissertation
  • Examinations
  • Group coursework
  • Presentation
  • Research project
  • Practical assessment

Contact time and study hours

On average, you will have around 20 contact hours a week in year one and two. Combined with coursework and self-study, you may spend over 40 hours a week on your studies.

Study abroad

There are study abroad options for this course.

Year in industry

There is the opportunity to spend a year in industry and we have a team of careers experts to support you in finding the right placement. During the placement you are classed as an employee of the host company and will receive a salary.

Placements are usually undertaken in the UK, but can be anywhere in the world.

Find out where our students have been on placement in the past.

Study Abroad and the Year in Industry are subject to students meeting minimum academic requirements. Opportunities may change at any time for a number of reasons, including curriculum developments, changes to arrangements with partner universities, travel restrictions or other circumstances outside of the university’s control. Every effort will be made to update information as quickly as possible should a change occur.

Discover Environmental Engineering at the University of Nottingham

Explore a typical day in our UK top 10 Chemical and Environmental Engineering department and discover why it's meant to be the course for you.

Modules

We have a common first year across the department that introduces the principle engineering sciences together with the fundamental aspects of process engineering design.

At the end of year one you can elect to transfer to any of the courses offered by the department.

Chemistry for Engineers

Content for this module will be confirmed later in 2022 - please keep checking back on this page.

Process Engineering Fundamentals

This module aims to provide you with an understanding of the fundamental material and energy balances that underpin process engineering. You'll study material balances incuding:

  • once-through and recycle systems
  • flowsheets for continuous processes
  • batch processes
  • steady and unsteady state operation
  • reacting and non-reacting systems
  • energy balances
  • combustion calculations
  • heat balances in chemical and physical systems
  • enthalpy/composition diagrams

You'll spend three hours in lectures and have regular practical workshops for this module.

Mathematical Methods for Engineers

Content for this module will be confirmed later in 2022 - please keep checking back on this page.

Fluid Dynamics
This course aims to extend previous knowledge of fluid flow by introducing the concept of viscosity and studying the fundamental governing equations for the motion of liquids and gases. Methods for solution of these equations are introduced, including exact solutions and approximate solutions valid for thin layers. A further aim is to apply the theory to model fluid dynamical problems of physical relevance.
Fundamentals of Engineering Design
This module introduces the deliverables, constraints and conventions of the design process. It will enable you to understand the fundamental basis of design, and the design tools most commonly used by engineers in the industry. Each week you will have two three-hour workshops and one one-hour computing session.
Engineering Thermodynamics
This module will present the basics of thermodynamics with particular emphasis on applications to process plant. By the end of the module you should be able to analyse most of the common energy-based operations found on process plant.
Introductory Geology

This module provides a basic understanding of geology and includes topics such as:

  • introduction to the main rock types and minerals
  • rock forming processes
  • the composition of the Earth
  • geological structures
  • natural hazards including volcanism and earthquakes
  • geological map interpretation
The above is a sample of the typical modules we offer but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. Modules (including methods of assessment) may change or be updated, or modules may be cancelled, over the duration of the course due to a number of reasons such as curriculum developments or staffing changes. Please refer to the module catalogue for information on available modules. This content was last updated on Monday 09 August 2021.

During this year you will become familiar with key process engineering concepts including process control, plant design, separation and particle technologies, material properties and sustainable processing.

Analytical Measurement
This module is designed to give you a theoretical and practical introduction to the principles of analytical measurement. Particular emphasis of the module is on quality control, quality assurance and accreditation. Teaching is delivered through a blend of lectures, practical workshops and computing sessions.
Calculus, Probability and Numerical Methods for Chemical and Environmental Engineering

Content for this module will be confirmed later in 2022 - please keep checking back on this page.

Environmental Assessment

Content for this module will be confirmed later in 2022 - please keep checking back on this page.

Hydrology and Hydrogeology

This module is designed for students with an interest in water resources, and provides an understanding of the movement and storage, pollution and pollution control, and the water-resource provision from both surface and sub-surface waters. You’ll spend three hours in lectures per week.

Materials and Sustainable Processes

Content for this module will be confirmed later in 2022 - please keep checking back on this page.

Process Design and Control

Content for this module will be confirmed later in 2022 - please keep checking back on this page.

Separation and Particle Technology

Content for this module will be confirmed later in 2022 - please keep checking back on this page.

The above is a sample of the typical modules we offer but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. Modules (including methods of assessment) may change or be updated, or modules may be cancelled, over the duration of the course due to a number of reasons such as curriculum developments or staffing changes. Please refer to the module catalogue for information on available modules. This content was last updated on

Laboratory exercises are open-ended, using large-scale and industrial equipment. Project management, business and finance are covered and you'll undertake specialised modules focusing on the management of air and water pollution.

Students wishing to take a year in industry, usually do so between their third and fourth year.

Air pollution 2 (spring)

The aim of this module is to give students an in depth understanding of the physical and chemical principles behind the selection and design of various processes that may be employed to control atmospheric pollutants.

Students will be introduced to the scientific and engineering principles behind the design, costing, commissioning and operation of particulate and gaseous control devices. Students will study the application of these principles to the design of pollution control devices, and stack designs for a range of engineering processes.

The module covers two main topics:

Topic 1: Control of Particulates, including

  • Cyclone design 
  • Electrostatic Precipitator Design 
  • Fabric Filter Design 
  • Particulate Scrubbers

Topic 2: Design of Auxiliary Equipment, including:

  • Hoods
  • Ducts
  • Fans
  • Coolers

Delivery

Activity Number of Weeks Number of sessions Duration of a session
Lecture 12 weeks 1 week 1 hour
Lecture 12 weeks 1 week 2 hours
Tutorial 12 weeks 1 week 1 hour

Assessment method

Assessment Type Weight Requirements
Coursework 20.00 Individual Student Engineering Design Calculation Assessment Sheet
Exam 80.00 Individual Student Particulate Process Control Design Project
Advanced Transport Phenomena

This module aims to provide an in depth knowledge of heat, mass and momentum transport that is necessary in assessing, analysing and developing chemical, biochemical and environmental processes.

Furthermore, this module fills the gap between first year transport phenomena and the fourth year CFD module while introducing the multi-physics aspect of the discipline. You’ll spend three hours in lectures and three hours in practicals each week studying for this module.

Design and Project Management

This is a group design project involving the preparation of heat and mass balances and flow sheets for a particular process scheme and the detailed design of certain important plant items. A study of the control, operational, safety, environmental and economic aspects will be included. You will also gain an appreciation of project and financial planning.

You’ll spend one hour in a tutorial and make use of self-study sessions each week studying for this module.

Hazardous Waste Management

The objective of this module is to provide the scientific and engineering principles of hazardous waste management. The contents include basic concepts and terminology, the properties and behaviour of hazardous waste, current management practices, design of processes and technology systems for treatment and disposal, and risk assessment and remediation technologies.

The taught programme is supported by a supplementary site visit to a hazardous waste landfill and treatment facility. You will spend three hours in lectures per week.

Multicomponent Separations

In this module you’ll look in detail at the process of mass transfer in multi-component separation equipment and multicomponent separation processes. You’ll learn principles of design for distillation and absorption columns and use computer applications. You’ll spend two hours in lectures and one hour in workshops per week studying for this module.

Process Dynamics and Control

This module aims to provide you with a basis for understanding the dynamic behaviour of a process system and the options available for its safe single loop control. It aims to help you develop an appreciation of:

  • the dynamic behaviour of processes
  • effects of disturbances and single loop controllers
  • the features and constraints on choice of conventional process control instruments and equipment
  • a basis for process analysis and design using dynamic process models and dynamic simulation

You'll spend two hours in lectures and two hours in computing sessions every week.

Process Engineering Laboratory

In this module you'll be given a laboratory-based problem and you'll need to plan experiments to collect the data required to solve the problem. You'll work in groups but write individual reports covering process assessment, experimental procedure and the description and discussion of the experimental results.

By solving a laboratory-based problem, you should gain the confidence in making decisions in a technical/scientific environment and adopt a rational, efficient approach to problem solving. You'll also become more familiar with the operation of commonly-encountered chemical engineering equipment and improve your skills in collecting, analysing and interpreting experimental data.

Reactor Design

This section is made up of eight topics, which are detailed below.  Each topic covers a fundamental principle in reactor design, also how students can combine those principles to derive/optimise the reactor design equations. The textbook Fogler, H. Scott "Elements of chemical reaction engineering", 4th ed., Prentice Hall, 2005 is closely followed. The main topics are:

  • mole balances
  • conversion and reactor sizing
  • rate laws and stoichiometry
  • collection and analysis of rate data
  • isothermal reactor design
  • multiple reactions
  • steady-state non-isothermal reactor design
  • catalysis and catalytic reactors
Water Treatment (autumn)

This module will introduce you to a range of knowledge and skills applicable to water and wastewater treatment. You'll gain an understanding in water availability, sources of pollution and the legislative framework for water quality from an EU perspective.

Municipal water and wastewater treatment processes will be covered, focusing on key unit processes including sedimentation, filtration and disinfection. You’ll spend three hours per week studying for this module. Teaching is also complemented by site visits.

The above is a sample of the typical modules we offer but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. Modules (including methods of assessment) may change or be updated, or modules may be cancelled, over the duration of the course due to a number of reasons such as curriculum developments or staffing changes. Please refer to the module catalogue for information on available modules. This content was last updated on

You'll be completely independent in your learning and will tackle a variety of complex, multidisciplinary problems and understand more advanced environmental engineering concepts. A research and design project is undertaken, giving you experience in cutting-edge research and the opportunity to develop more advanced skills.

MEng Project

In this module, you’ll undertake a combined design and research project in a team of two to four students. In addition, you’ll gain detailed knowledge in the specific topic of study.

The aim is for you to gain skills in planning, executing and reporting on an individual research study thereby developing their powers of analysis, independence and critical judgement. You’ll spend one hour in tutorials and make use of group-study sessions each week studying for this module.

Optional modules

Air pollution 2 (spring)

The aim of this module is to give students an in depth understanding of the physical and chemical principles behind the selection and design of various processes that may be employed to control atmospheric pollutants.

Students will be introduced to the scientific and engineering principles behind the design, costing, commissioning and operation of particulate and gaseous control devices. Students will study the application of these principles to the design of pollution control devices, and stack designs for a range of engineering processes.

The module covers two main topics:

Topic 1: Control of Particulates, including

  • Cyclone design 
  • Electrostatic Precipitator Design 
  • Fabric Filter Design 
  • Particulate Scrubbers

Topic 2: Design of Auxiliary Equipment, including:

  • Hoods
  • Ducts
  • Fans
  • Coolers

Delivery

Activity Number of Weeks Number of sessions Duration of a session
Lecture 12 weeks 1 week 1 hour
Lecture 12 weeks 1 week 2 hours
Tutorial 12 weeks 1 week 1 hour

Assessment method

Assessment Type Weight Requirements
Coursework 20.00 Individual Student Engineering Design Calculation Assessment Sheet
Exam 80.00 Individual Student Particulate Process Control Design Project
Contaminated Land

This module develops a risk based framework for the assessment of contaminated land based on the characterization and modelling of contaminant sources, pathways and receptors and the remediation of such linkages.

Case studies are used to illustrate the application of this approach, the typical uncertainties and the management of risk. A range of physical, biological, chemical and thermal in-situ and ex-situ remediation technologies are covered. The application of these technologies is demonstrated by case studies including design studies based on the emerging concept of sustainable remediation.

Environmental Risk Assessment

This module covers the following:

  • Risk assessment principles (source, pathway, receptor) including conceptual frameworks, Greenleaves III, risk based regulation and environmental protection
  • Risk characterisation, hazard identification, consequences, significance, handling uncertainty
  • Tools and techniques: Qualitative risk assessment. Quantitative risk assessment, ie hands-on risk assessment modelling
  • Risk management
  • Fate and transport of contaminants, speciation of contaminants, environmental partitioning (fugacity)
  • Health impact assessment: Public health, occupational health studies, toxicology, perception, exposure, causality, odds ratios, epidemiological studies, scientific evidence for landfill versus energy from waste (comparative assessment), odour
Energy Storage (spring)

This module aims to provide you with the fundamental knowledge of energy storage science and the practical skills related to this area. It covers the following topics:

  • fuels storage (coal, oil, natural gas, biomass, hydrogen etc)
  • mechanical energy storage (springs, compressed air, fly wheels etc)
  • heat or thermal energy storage (phase transformation, endothermic and exothermic reactions etc)
  • electricity storage (electrochemical means, such as batteries, fuel cells, redox flow batteries, supercapacitors)
  • integration of storage with supplier and users (power electronics for interfacing energy stores with power grid, renewable sources and users)

You’ll spend two hours in lectures and three hours in practicals per week.

 

Fossil Energy Resources and Utilisation: Past, Present and Future

The aim of the module is to provide the students with a thorough understanding of coal, oil and gas reserves, how they are utilised currently and how their use will be modified by CO2 mitigation in a global context.

The module first entails introductory lectures on the subject which will define the initial individual directed reading tasks. After the outcomes of these have been assessed, the students will embark on a literature-based exercise on a specific topic that will be reviewed both in depth and critically. The topic will be defined by discussions with the module convenor.

Power Generation and Carbon Capture (autumn)

The following topics are covered:

  • fossil fuels, occurrence, use and world-wide availability
  • fossil power generation, conventional and advanced technologies
  • current environmental/climate change issues in power generation using fossil fuels
  • emission problems and reduction technologies
  • climate-forcing carbon emissions and fossil energy de-carbonisation
  • co-firing of fossil fuels and biomass
  • carbon (CO2) capture and storage (CCS)

The challenges in tackling climate change call for a sustainable re-structuring of our energy infrastructure, particularly the fossil fuel fired power generation sector. The primary aim of this module is to address the major issues and challenges facing the power generation sector using fossil fuels. This will be related to emissions problems and their abatement technologies and will address both conventional and advanced power generation technologies.

There will be a particular focus on various aspects of CCS technologies and their application in a range of fossil energy sectors, from the technical and deployment status of CCS to related financial and environmental challenges and opportunities. You’ll have two hours of lectures a week for this module.

Delivery

Activity Number of Weeks Number of sessions Duration of a session
Lecture 11 weeks 1 week 2 hours
Lecture 11 weeks 1 week 2 hours

Assessment method

Assessment Type Weight Requirements
Dissertation 30.00 Technology Assessment Report and Presentation
Exam 70.00 2 hour exam
Process Risk and Benefit (spring)

The module will explore decision making in the presence of uncertainty Risks of particular interest are those associated with large engineering projects such as the development of innovative new products and processes.

The module will presents and interpret some of the frameworks helpful for balancing risks and benefits in situations that typically involve human safety, potential environmental effects, and large financial and technological uncertainties.

Case studies will be used to illustrate key points and these will centre around the use and recovery of plastics, metals, industrial minerals and energy.

Method and Frequency of Class:

Activity Number of Weeks Number of sessions Duration of a session
Tutorial 12 weeks 1 week 3 hours

Method of Assessment:

Assessment Type Weight Requirements
Coursework 1 20.00 8 page report
Coursework 2 20.00 10 minute presentation with Q and A
Coursework 3 30.00 25 page business plan
Coursework 4 15.00 10 minute presentation with Q and A
Coursework 5 15.00 3 page report
Process Synthesis and Design (autumn)

This module develops the student's ability in directed group work to synthesising and designing sustainable chemical processes.

The group project will involve teams of three to four students. Two projects covering flow-sheet synthesis and resource conservation will be undertaken.

Delivery

Activity Number of Weeks Number of sessions Duration of a session
Computing 11 weeks 1 week 2 hours
Lecture 11 weeks 1 week 1 hour

Assessment method

Assessment Type Weight Requirements
Coursework 1 40.00

Group project, technical report, maximum 2,000 words. Group project, presentation, maximum 15 minutes.

Coursework 2 60.00 Individual project, technical report, max 2,000 words.
Renewable Energy from Wastes (autumn)

This module will focus on renewable energy from different waste streams. You will examine the potential of various waste streams in industry, domestic sources, and agriculture, as well as the different combustion technologies available. There will be a strong international focus, particularly on small/medium-scale renewable energy schemes in developing countries. The module will also have dedicated socio-cultural, socio-economic, policy and guidance and techno-economic seminars to introduce you to the interdisciplinary nature of the subject.

Water Treatment Engineering

This module will concentrate on water treatment technologies covering those applicable to both the treatment of wastewater and the treatment of water for potable (drinking water) use. The first part of the module will review current practice and scientific principles in water treatment.

Case Studies across the water industry will be utilised to demonstrate problems and potential solutions and gain an understanding of design considerations and operation of water treatment processes. You’ll study emerging issues in water treatment and how developing technologies are addressing them. Guest speakers from industry and two site visits will support the module delivery. You’ll spend three hours in lectures per week.

The above is a sample of the typical modules we offer but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. Modules (including methods of assessment) may change or be updated, or modules may be cancelled, over the duration of the course due to a number of reasons such as curriculum developments or staffing changes. Please refer to the module catalogue for information on available modules. This content was last updated on

Fees and funding

UK students

£9,250
Per year

International students

£25,000*
Per year

*For full details including fees for part-time students and reduced fees during your time studying abroad or on placement (where applicable), see our fees page.

If you are a student from the EU, EEA or Switzerland, you may be asked to complete a fee status questionnaire and your answers will be assessed using guidance issued by the UK Council for International Student Affairs (UKCISA) .

Scholarships and bursaries

The University offers a wide range of bursaries and scholarships. These funds can provide you with an additional source of non-repayable financial help:

Careers

During this course you will develop your knowledge of science and engineering, together with a wide range of transferable skills including IT, communication, analysis, problem solving, teamworking and management.

Our graduates are well-regarded and find career opportunities in a range of industries, including:

  • energy
  • chemical manufacturing
  • pharmaceutical
  • food
  • oil and gas
  • government agencies worldwide

Average starting salary and career progression

89.5% of undergraduates from the Department of Chemical and Environmental Engineering secured graduate level employment or further study within 15 months of graduation. The average annual salary for these graduates was £31,426.*

* HESA Graduate Outcomes 2020. The Graduate Outcomes % is derived using The Guardian University Guide methodology. The average annual salary is based on graduates working full-time within the UK.

Studying for a degree at the University of Nottingham will provide you with the type of skills and experiences that will prove invaluable in any career, whichever direction you decide to take.

Throughout your time with us, our Careers and Employability Service can work with you to improve your employability skills even further; assisting with job or course applications, searching for appropriate work experience placements and hosting events to bring you closer to a wide range of prospective employers.

Have a look at our careers page for an overview of all the employability support and opportunities that we provide to current students.

The University of Nottingham is consistently named as one of the most targeted universities by Britain’s leading graduate employers (Ranked in the top ten in The Graduate Market in 2013-2020, High Fliers Research).

Institution of Chemical Engineers (IChemE)

This course is accredited by the IChemE (Institution of Chemical Engineers)

Institute of Materials, Minerals and Mining (IOM3)

This course is accredited by the IOM3 (Institute of Materials, Minerals and Mining).

Dummy placeholder image

Related courses

Important information

This online prospectus has been drafted in advance of the academic year to which it applies. Every effort has been made to ensure that the information is accurate at the time of publishing, but changes (for example to course content) are likely to occur given the interval between publishing and commencement of the course. It is therefore very important to check this website for any updates before you apply for the course where there has been an interval between you reading this website and applying.