University of Nottingham

ISAC - Facilities

ISAC offers access to a huge variety of surface analytical facilities. Using combined resources from across the University of Nottingham, the centre has a wealth of world leading instrumentation and expertise in surface analytics. For information regarding our facilities and to explore how we can help you better access and perform interfacial science please contact us.

A selection of our most commonly used techniques are described below. Learn a little bit more about the theory behind them, the instrumentation we possess and what it could do for you. Click on the headers to expand each section.


AFM and Female Operator

Atomic force microscopy (AFM) is an example of high resolution scanning probe microscopy, which allows the imaging and physicochemical analysis of molecular surfaces with nanometre resolution.


Acurion Nanofilm_ep4 Imaging Ellipsometer

Ellipsometry is an optical technique used to determine thin film thicknesses with Ångström resolution and infer material properties.




ISAC's Horiba LabRam HR - A  multifunctional Raman Spectrometer

Raman spectroscopy is a non-invasive technique that generates a specific fingerprint spectrum through which the molecule or compound can be identified or observed in real-time transitions.


Our FIB-SEM can perform a multitude of sample preparation, handling and imaging proceedures.

SEM is an imaging technique with high depth of field and lateral resolution. It uses electrons to generate secondary sample irradiance. This can then be analysed to visualise sample surfaces as well as analyse the physical and chemical state of the substrate.



Surface Plasmon Resonance (SPR) allows sensitive detection of molecular interactions in real time without labels. It can measure the binding, kinetics, affinity, specificity and concentration of an event and saves the work of purifying and labelling materials.



JEOL 2100F FEG TEM - An Scanning Transmission Electron Microscope with an array of specimen holders

Transmission Electron Microscopy (TEM) is capable of providing very high resolution images down to a level of several Angstroms (~ 0.19nm). The study of nano-scale morphological and chemical features in cells or different materials down to near atomic levels is possible.


ISAC ToF-SIMS facilites offer multiple ion sources and operational modes to suit the desired application

Secondary Ion Mass Spectrometry (SIMS) is a highly sensitive surface analytical method that describes the chemical character of a presented substrate surface in 3D. Solid surfaces can be analysed by either a high mass resolution Orbitrap analyser or a high imaging resolution time of flight (ToF) analyser on the new HybridSIMS instrument. Combined this offers complete information and versatility in determining the surface chemistry of the specimen in question.  

Contact Angle


Measuring the contact angle of a liquid on a solid surface allows quantification of the wettability (how a liquid spreads). This can in turn be used to investigate the energetics of an interface.




Sample Chamber of an XPS Instrument

X-ray photoelectron spectroscopy (XPS) is a surface analysis technique that qualifies and quantifies the elemental composition and chemical state of a material.



X-ray Computed Tomography (CT) is a non-invasive, non-destructive imaging technique permitting the visualisation and quantification of the interior structure of an object in three dimensions. Micro-CT generates cross-sections with pixel sizes in the micrometre range for high resolution imaging.


Prosolia DESI 2D Imaging MS Interface

Liquid Chromatography-Mass Spectrometry (LC-MS) is a versatile and highly sensitive analytical technique for the quantification and qualification of small molecular weight compounds in a diverse range of samples. 




Fluorescence Microscopy

Fluorescent nanosensors are spherical probes composed of an inert matrix with nanometre sized dimensions that selectively respond to stimuli in their surroundings to transduce fluorescence signals to a detector. 

Particle Sizing

Pic 1-crop

Particle size analysis is the characterization of the size distribution (size range and/or mean size) of particles in a sample. Particle sizing can be applied to solid materials, suspensions, emulsions and aerosols.

Spectroscopy Suite

Spec Suite-Header Image

Spectroscopy involves an interaction between light (electromagnetic radiation) and matter, including absorption, emission, scattering, refraction, resonance and diffraction.





Interface and Surface Analysis Centre (ISAC)